...
首页> 外文期刊>mSphere >Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania
【24h】

Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania

机译:在利什曼原虫中进行CRISPR-Cas9切割后,单链退火在双链DNA断裂修复中起主要作用

获取原文

摘要

CRISPR-Cas9 genome editing relies on an efficient double-strand DNA break (DSB) and repair. Contrary to mammalian cells, the protozoan parasite Leishmania lacks the most efficient nonhomologous end-joining pathway and uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair to repair DSBs. Here, we reveal that Leishmania predominantly uses single-strand annealing (SSA) (90%) instead of MMEJ (10%) for DSB repair (DSBR) following CRISPR targeting of the miltefosine transporter gene, resulting in 9-, 18-, 20-, and 29-kb sequence deletions and multiple gene codeletions. Strikingly, when targeting the Leishmania donovani LdBPK_241510 gene, SSA even occurred by using direct repeats 77?kb apart, resulting in the codeletion of 15 Leishmania genes, though with a reduced frequency. These data strongly indicate that DSBR is not efficient in Leishmania , which explains why more than half of DSBs led to cell death and why the CRISPR gene-targeting efficiency is low compared with that in other organisms. Since direct repeat sequences are widely distributed in the Leishmania genome, we predict that many DSBs created by CRISPR are repaired by SSA. It is also revealed that DNA polymerase theta is involved in both MMEJ and SSA in Leishmania . Collectively, this study establishes that DSBR mechanisms and their competence in an organism play an important role in determining the outcome and efficacy of CRISPR gene targeting. These observations emphasize the use of donor DNA templates to improve gene editing specificity and efficiency in Leishmania . In addition, we developed a novel Staphylococcus aureus Cas9 constitutive expression vector (pLdSaCN) for gene targeting in Leishmania . IMPORTANCE Due to differences in double-strand DNA break (DSB) repair mechanisms, CRISPR-Cas9 gene editing efficiency can vary greatly in different organisms. In contrast to mammalian cells, the protozoan parasite Leishmania uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair (HDR) to repair DSBs but lacks the nonhomologous end-joining pathway. Here, we show that Leishmania predominantly uses single-strand annealing (SSA) instead of MMEJ for DSB repairs (DSBR), resulting in large deletions that can include multiple genes. This strongly indicates that the overall DSBR in Leishmania is inefficient and therefore can influence the outcome of CRISPR-Cas9 gene editing, highlighting the importance of using a donor DNA to improve gene editing fidelity and efficiency in Leishmania .
机译:CRISPR-Cas9基因组编辑依赖于有效的双链DNA断裂(DSB)和修复。与哺乳动物细胞相反,原生动物寄生虫利什曼原虫缺乏最有效的非同源末端连接途径,并使用微同源介导的末端连接(MMEJ),偶尔使用同源性定向修复来修复DSB。在这里,我们揭示利什曼原虫主要使用单链退火(> 90%)而非MMEJ(<10%)进行CRISPR靶向miltefosine转运蛋白基因的DSB修复(DSBR),从而产生9-,18- ,20和29 kb的序列缺失和多个基因密码缺失。令人惊讶的是,当靶向多形利什曼原虫LdBPK_241510基因时,SSA甚至通过使用相距77?kb的直接重复序列而发生,导致了15个利什曼原虫基因的编码缺失,尽管频率有所降低。这些数据强烈表明,DSBR在利什曼原虫中效率不高,这解释了为什么一半以上的DSB导致细胞死亡,以及为什么CRISPR基因靶向效率比其他生物低。由于直接重复序列广泛分布在利什曼原虫基因组中,我们预测由CRISPR创建的许多DSB将被SSA修复。还发现在利什曼原虫中MMEJ和SSA都与DNA聚合酶θ有关。总的来说,这项研究建立了DSBR机制及其在生物中的能力在决定CRISPR基因靶向的结果和功效中起着重要作用。这些观察结果强调了使用供体DNA模板来改善利什曼原虫的基因编辑特异性和效率。此外,我们开发了新型的金黄色葡萄球菌Cas9组成型表达载体(pLdSaCN),用于利什曼原虫的基因靶向。重要信息由于双链DNA断裂(DSB)修复机制的差异,CRISPR-Cas9基因编辑效率在不同生物中可能有很大差异。与哺乳动物细胞相反,原生动物寄生虫利什曼原虫使用微同源介导的末端连接(MMEJ),偶尔使用同源性定向修复(HDR)来修复DSB,但缺少非同源末端连接途径。在这里,我们显示利什曼原虫主要使用单链退火(SSA)而不是MMEJ进行DSB修复(DSBR),从而导致大的缺失,其中可能包含多个基因。这有力地表明利什曼原虫的总体DSBR效率低下,因此可以影响CRISPR-Cas9基因编辑的结果,突显了使用供体DNA来改善利什曼原虫中基因编辑保真度和效率的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号