...
首页> 外文期刊>Molecular biology of the cell >Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint
【24h】

Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint

机译:Nek2激酶对Ndc80复合蛋白HEC1的磷酸化调节染色体排列和纺锤体装配检查点的信号传导

获取原文
           

摘要

The spindle assemble checkpoint (SAC) is critical for accurate chromosome segregation. Hec1 contributes to chromosome segregation in part by mediating SAC signaling and chromosome alignment. However, the molecular mechanism by which Hec1 modulates checkpoint signaling and alignment remains poorly understood. We found that Hec1 serine 165 (S165) is preferentially phosphorylated at kinetochores. Phosphorylated Hec1 serine 165 (pS165) specifically localized to kinetochores of misaligned chromosomes, showing a spatiotemporal distribution characteristic of SAC molecules. Expressing an RNA interference (RNAi)-resistant S165A mutant in Hec1-depleted cells permitted normal progression to metaphase, but accelerated the metaphase-to-anaphase transition. The S165A cells were defective in Mad1 and Mad2 localization to kinetochores, regardless of attachment status. These cells often entered anaphase with lagging chromosomes and elicited increased segregation errors and cell death. In contrast, expressing S165E mutant in Hec1-depleted cells triggered defective chromosome alignment and severe mitotic arrest associated with increased Mad1/Mad2 signals at prometaphase kinetochores. A small portion of S165E cells eventually bypassed the SAC but showed severe segregation errors. Nek2 is the primary kinase responsible for kinetochore pS165, while PP1 phosphatase may dephosphorylate pS165 during SAC silencing. Taken together, these results suggest that modifications of Hec1 S165 serve as an important mechanism in modulating SAC signaling and chromosome alignment.
机译:纺锤体组装检查点(SAC)对于准确的染色体分离至关重要。 Hec1部分通过介导SAC信号传导和染色体比对而有助于染色体分离。但是,尚不清楚Hec1调节检查点信号和对齐方式的分子机制。我们发现,Hec1丝氨酸165(S165)在动植物中优先被磷酸化。磷酸化的Hec1丝氨酸165(pS165)特异地定位于错位染色体的动植物,显示出SAC分子的时空分布特征。在缺失Hec1的细胞中表达耐RNA干扰(RNAi)的S165A突变体可正常进展到中期,但加速了中期到后期的过渡。无论附着状态如何,S165A细胞在Mad1和Mad2定位到动粒体方面均存在缺陷。这些细胞经常进入染色体滞后的后期,导致分离错误增加和细胞死亡。相反,在Hec1耗尽的细胞中表达S165E突变体会触发缺陷的染色体排列和严重的有丝分裂停滞,与前中期动植物的Mad1 / Mad2信号增加有关。一小部分S165E细胞最终绕过了SAC,但显示出严重的分离错误。 Nek2是负责线粒体pS165的主要激酶,而PP1磷酸酶可能会在SAC沉默期间使pS165脱磷酸。综上所述,这些结果表明,Hec1 S165的修饰是调节SAC信号传导和染色体比对的重要机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号