...
首页> 外文期刊>Micromachines >Calibration of a Constitutive Model from Tension and Nanoindentation for Lead-Free Solder
【24h】

Calibration of a Constitutive Model from Tension and Nanoindentation for Lead-Free Solder

机译:基于张力和纳米压痕的无铅焊料本构模型的校准

获取原文
   

获取外文期刊封面封底 >>

       

摘要

It is challenging to evaluate constitutive behaviour by using conventional uniaxial tests for materials with limited sizes, considering the miniaturization trend of integrated circuits in electronic devices. An instrumented nanoindentation approach is appealing to obtain local properties as the function of penetration depth. In this paper, both conventional tensile and nanoindentation experiments are performed on samples of a lead-free Sn–3.0Ag–0.5Cu (SAC305) solder alloy. In order to align the material behaviour, thermal treatments were performed at different temperatures and durations for all specimens, for both tensile experiments and nanoindentation experiments. Based on the self-similarity of the used Berkovich indenter, a power-law model is adopted to describe the stress–strain relationship by means of analytical dimensionless analysis on the applied load-penetration depth responses from nanoindentation experiments. In light of the significant difference of applied strain rates in the tensile and nanoindentation experiments, two “rate factors” are proposed by multiplying the representative stress and stress exponent in the adopted analytical model, and the corresponding values are determined for the best predictions of nanoindentation responses in the form of an applied load–indentation depth relationship. Eventually, good agreement is achieved when comparing the stress–strain responses measured from tensile experiments and estimated from the applied load–indentation depth responses of nanoindentation experiments. The rate factors ψ σ and ψ n are calibrated to be about 0.52 and 0.10, respectively, which facilitate the conversion of constitutive behaviour from nanoindentation experiments for material sample with a limited size.
机译:考虑到电子设备中集成电路的小型化趋势,通过使用常规的单轴测试来评估尺寸有限的材料的本构行为是一项挑战。仪器化的纳米压痕方法吸引人,以获得作为渗透深度的函数的局部性质。在本文中,常规拉伸和纳米压痕实验都是在无铅Sn-3.0Ag-0.5Cu(SAC305)焊料合金样品上进行的。为了使材料性能一致,在拉伸实验和纳米压痕实验中,对所有样品在不同的温度和持续时间下进行了热处理。基于所使用的Berkovich压头的自相似性,采用幂律模型,通过对纳米压痕实验施加的载荷穿透深度响应进行无量纲分析,来描述应力-应变关系。鉴于拉伸和纳米压痕实验中施加应变率的显着差异,通过将采用的分析模型中的代表应力和应力指数相乘,提出了两个“速率因子”,并确定了相应的值,以最佳地预测纳米压痕载荷-压痕深度关系形式的响应。最终,当比较通过拉伸实验测得的应力-应变响应和根据纳米压痕实验施加的载荷-压痕深度响应进行估算时,可以达到良好的一致性。将速率因子ψσ和ψn分别校准为大约0.52和0.10,这有助于对有限尺寸的材料样品进行纳米压痕实验,从而转变本构行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号