首页> 外文期刊>Metabolic Engineering Communications >Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols
【24h】

Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols

机译:酿酒酵母的代谢工程用于过量生产三酰基甘油

获取原文
       

摘要

Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy by overexpressing genes encoding a deregulated acetyl-CoA carboxylase, ACC1 S659A/S1157A (ACC1**) , as well as the last two steps of TAG formation: phosphatidic phosphatase ( PAH1 ) and diacylglycerol acyltransferase ( DGA1 ), ultimately leading to 129?mg?gCDW?1 of TAGs. Disruption of TAG lipase genes TGL3 , TGL4 , TGL5 and sterol acyltransferase gene ARE1 increased the TAG content to 218?mg?gCDW?1. Further disruption of the beta-oxidation by deletion of POX1 , as well as glycerol-3-phosphate utilization through deletion of GUT2 , did not affect TAGs levels. Finally, disruption of the peroxisomal fatty acyl-CoA transporter PXA1 led to accumulation of 254?mg?gCDW?1. The TAG levels achieved here are the highest titer reported in S. cerevisiae , reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species for high level lipid production.
机译:三酰基甘油(TAG)是有价值的通用化合物,可用作营养和健康的代谢产物以及生物燃料生产的原料。尽管酿酒酵母是用于生化试剂工业生产的最受欢迎的微生物细胞工厂,但它不会产生大量脂质,而TAG仅占其细胞干重的1%。在这里,我们通过调节参与TAG合成和水解的脂滴相关蛋白,对酿酒酵母进行了工程改造,以使其新陈代谢重新定向到TAG的过量生产。我们通过过表达编码失调的乙酰辅酶A羧化酶ACC1 S659A / S1157A (ACC1 **)的基因以及TAG形成的最后两个步骤来实施推挽策略:磷脂酶(PAH1)和二酰基甘油酰基转移酶(DGA1),最终导致产生129?mg?gCDW ?1 TAG。 TAG脂酶基因TGL3,TGL4,TGL5和固醇酰基转移酶基因ARE1的破坏使TAG含量增加到218?mg?gCDW ?1 。通过删除POX1进一步破坏β-氧化作用,以及通过删除GUT2来利用3-磷酸甘油,均不影响TAGs水平。最后,过氧化物酶体脂肪酰基辅酶A转运蛋白PXA1的破坏导致254?mg?gCDW ?1 的积累。此处获得的TAG水平是啤酒酵母中最高的滴度,在含2%葡萄糖的基本培养基中达到最高理论产量的27.4%。这项工作表明了使用工业上建立的强大的酵母菌种进行高水平脂质生产的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号