首页> 外文期刊>Frontiers in Human Neuroscience >Transcranial Direct Current Stimulation and Sports Performance
【24h】

Transcranial Direct Current Stimulation and Sports Performance

机译:经颅直流电刺激与运动表现

获取原文
           

摘要

The application of transcranial direct current stimulation (tDCS) has moved from the laboratory to the wider community. This form of non-invasive brain stimulation has been shown in a number of controlled animal and human experiments, over nearly five decades, to modulate brain physiology, cognitive functions, and behavior. While its effects are variable across and within individuals, it is not unreasonable to state that tDCS harbors the potential to enhance executive and physical human performance. In a society increasingly driven to succeed with less effort, performance enhancement with an intervention that has an excellent safety record, is well tolerated, relatively inexpensive and readily available, is particularly appealing. Here, we offer a perspective on tDCS for the enhancement of physical performance in sport. The ethical and legal implications of the transition of tDCS from academic experimental work to general-public use, are discussed elsewhere (Janssens and Kraft, 2012 ; Bain et al., 2015 ; Fregni et al., 2015 ; Bikson et al., 2016a ; Kuersten and Hamilton, 2016 ; Zettler, 2016 ).We know from modeling (Datta et al., 2009 ; Luu et al., 2016 ), imaging (Baudewig et al., 2001 ; DosSantos et al., 2012 ; Jog et al., 2016 ), intra-cranial recording (Huang et al., 2017 ), and physiological studies (Nitsche and Paulus, 2000 ; Edwards et al., 2013 ; Strube et al., 2016 ) that the electrical current from tDCS can penetrate the skull to influence neural tissue and vasculature (Hamner et al., 2015 ). A good way to intuit that small amounts of current can transverse the skull is to recognize that the electroencephalogram (EEG) represents current passage in the reverse direction (Wagner et al., 2016 ). We also know that under laboratory conditions (Woods et al., 2016 ), the safety profile of tDCS is excellent, including in people with neurological and other disorders (Bikson et al., 2016b ) although its safety for repeated and prolongued use in healthy individuals has yet to be confirmed (Wexler, 2016 ; Angius et al., 2017 ).The spread of tDCS outside controlled laboratory conditions, fueled to some extent by media attention and high-profile users, has created concerns among some tDCS researchers. Recently we have seen the publication of an open letter recommending considerations for do-it-yourself (DIY) tDCS (Wurzman et al., 2016 ), including the involvement of healthcare professionals. A workshop hosted by the United States Institute of Medicine (IOM) addressed clinical and non-clinical applications of tDCS, including available evidence, safety, and ethics (Bain et al., 2015 ).While tDCS can broadly modulate brain activity, and is considered safe within accepted boundaries, it remains to be conclusively determined whether it can improve sports performance at an elite level. The ability to optimize muscle control and maximize speed, power or duration is crucial to many sports, as is training and motivation (Crewther et al., 2016 ). In pursuit of excellence, athletes already use holistic approaches that directly or indirectly influence the brain. Some of these approaches include: meditation and visualization (Rich et al., 2016 ), and acupuncture (Ahmedov, 2010 ), which can have central effects (Zhu et al., 2015 ). Other holistic techniques include music to reduce the perception of physical effort (Jarraya et al., 2012 ) and psychological tools for motivation or harnessing placebo effects (Sabino-Carvalho et al., 2016 ).Many athletes implement at least one of these tools; which, while not scientifically proven in all cases, are considered safe. tDCS may be yet another example (Figure 1 ). Figure 1 Examples of tDCS device being used in sports training. (A,B) Caputron tDCS device. (C,D) Halo tDCS device. Devices are typically used for 20 min before intensive training when motion is minimized, then removed when intensive physical training begins, comparable to timing in clinical rehabilitation. Okano et al. studied the effects of 20 min of tDCS with the anode over the left temporal cortex (T3) on trained cyclists (Okano et al., 2013 ) during an incremental cycling test, and found significantly improved peak power, as well as reduced heart rate and perception of effort at submaximal workloads. Clarke et al. evaluated the effects of tDCS on a perceptual-learning paradigm (object detection in a simulated combat environment), showing significant enhancement of threat-detection accuracy with tDCS with the anode over the right inferior frontal cortex (Clark et al., 2012 ). In both cases, performance benefits were at least partially attributed to the effects of tDCS on perception (reduced fatigue and improved threat detection). Angius et al. ( 2016 ) likewise reported reduced perception of effort and increased endurance in 9 cyclists following anodal stimulation of the motor cortex (M1) when the cathode was placed on the contralateral shoulder but not when placed over the prefrontal region. Similarly, Borducchi et al
机译:经颅直流电刺激(tDCS)的应用已从实验室转移到更广泛的社区。近五十年来,在许多受控的动物和人体实验中已显示出这种形式的非侵入性脑刺激,可调节脑生理,认知功能和行为。尽管其影响在个人之间和个人内部是可变的,但可以肯定地说,tDCS具有增强执行力和身体绩效的潜力。在越来越多的人以较少的努力获得成功的社会中,具有出色的安全记录,耐受性良好,相对便宜且易于获得的干预措施可以提高性能,特别吸引人。在这里,我们提供了有关tDCS的观点,以提高运动中的身体表现。 tDCS从学术实验工作向普通公众使用过渡的伦理和法律含义在其他地方进行了讨论(Janssens和Kraft,2012; Bain等人,2015; Fregni等人,2015; Bikson等人,2016a ; Kuersten and Hamilton,2016; Zettler,2016)。我们从建模(Datta等,2009; Luu等,2016),成像(Baudewig等,2001; DosSantos等,2012; Jog等)了解到et al。,2016),颅内记录(Huang et al。,2017)和生理学研究(Nitsche and Paulus,2000; Edwards et al。,2013; Strube et al。,2016),tDCS的电流可以穿透颅骨影响神经组织和脉管系统(Hamner等,2015)。了解少量电流可以横穿颅骨的一种好方法是认识到脑电图(EEG)代表反向电流通过(Wagner et al。,2016)。我们还知道在实验室条件下(Woods等,2016),tDCS的安全性非常好,包括在患有神经系统疾病和其他疾病的人群中(Bikson等,2016b),尽管它在健康中反复和长期使用的安全性尚未确认个体(Wexler,2016; Angius等,2017).tDCS在受控实验室条件之外的传播,在一定程度上受到媒体关注和高知名度用户的推动,引起了一些tDCS研究人员的关注。最近,我们看到了一封公开信的发布,建议您考虑自己动手(DIY)tDCS(Wurzman等人,2016年),包括医疗保健专业人员的参与。美国医学研究所(IOM)主办的研讨会探讨了tDCS的临床和非临床应用,包括可用的证据,安全性和伦理学(Bain等人,2015年).tDCS可以广泛调节大脑活动,并且虽然在公认的范围内被认为是安全的,但是否能够在精英水平上改善运动表现还有待最终确定。优化肌肉控制和最大化速度,力量或持续时间的能力对许多运动至关重要,训练和动力也是如此(Crewther等,2016)。为了追求卓越,运动员已经使用直接或间接影响大脑的整体方法。其中一些方法包括:冥想和可视化(Rich等,2016)和针灸(Ahmedov,2010),它们可能会产生重要影响(Zhu等,2015)。其他整体技术包括音乐以减少对身体努力的感知(Jarraya等人,2012年)和用于激发动机或利用安慰剂作用的心理工具(Sabino-Carvalho等人,2016年)。尽管并非在所有情况下都经过科学证明,但仍被认为是安全的。 tDCS可能是另一个示例(图1)。图1在运动训练中使用的tDCS设备示例。 (A,B)Caputron tDCS设备。 (C,D)Halo tDCS设备。当运动减至最小时,设备通常在强化训练之前使用20分钟,然后在强化体育锻炼开始时将其取出,这与临床康复的时间相当。冈野等。在增量骑行测试中研究了20分钟的tDCS与左侧颞叶皮质(T3)上的阳极对训练有素的骑自行车者的影响(Okano et al。,2013),发现峰值功率显着提高,并且心率降低,在最大工作量下的工作量感知。克拉克等。评估了tDCS对知觉学习范例(在模拟战斗环境中的目标检测)的影响,结果表明,tDCS的阳极位于右下额叶皮层上方,可以显着提高威胁检测的准确性(Clark et al。,2012)。在这两种情况下,性能优势至少部分归因于tDCS对知觉的影响(减少疲劳和改善威胁检测)。 Angius等。 (2016)同样报道了当阳极放置在对侧肩膀上而不是放置在前额区域上方时,对运动皮层(M1)进行阳极刺激后,9名骑车人的努力意识降低,耐力增强。同样,Borducchi等

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号