首页> 外文期刊>Frontiers in Environmental Science >Prediction of Compounds Activity in Nuclear Receptor Signaling and Stress Pathway Assays Using Machine Learning Algorithms and Low-Dimensional Molecular Descriptors
【24h】

Prediction of Compounds Activity in Nuclear Receptor Signaling and Stress Pathway Assays Using Machine Learning Algorithms and Low-Dimensional Molecular Descriptors

机译:使用机器学习算法和低维分子描述符预测核受体信号传导和应力通路分析中的化合物活性

获取原文
获取外文期刊封面目录资料

摘要

Toxicity evaluation of newly synthesized or used compounds is one of the main challenges during product development in many areas of industry. For example, toxicity is the second reason - after lack of efficacy - for failure in preclinical and clinical studies of drug candidates. To avoid attrition at the late stage of the drug development process, the toxicity analyses are employed at the early stages of a discovery pipeline, along with activity and selectivity enhancing. Although many assays for screening in vitro toxicity are available, their massive application is not always time and cost effective. Thus the need for fast and reliable in silico tools, which can be used not only for toxicity prediction of existing compounds, but also for prioritization of compounds planned for synthesis or acquisition. Here I present the benchmark results of the combination of various attribute selection methods and machine learning algorithms and their application to the data sets of the Tox21 Data Challenge. The best performing method: Best First for attribute selection with the Rotation Forest/ADTree classifier offers good accuracy for most tested cases. For 11 out of 12 targets, the AUROC value for the final evaluation set was ≥0.72, while for three targets the AUROC value was ≥ 0.80, with the average AUROC being 0.784±0.069. The use of two-dimensional descriptors sets enables fast screening and compound prioritization even for a very large database. Open source tools used in this project make the presented approach widely available and encourage the community to further improve the presented scheme.
机译:新合成或使用过的化合物的毒性评估是许多工业领域产品开发过程中的主要挑战之一。例如,在缺乏疗效之后,毒性是导致候选药物临床前和临床研究失败的第二个原因。为避免在药物开发过程的后期发生损耗,在发现流程的早期阶段进行了毒性分析,并提高了活性和选择性。尽管有许多用于筛选体外毒性的检测方法,但它们的大量应用并不总是节省时间和成本。因此,需要快速可靠的计算机软件,该工具不仅可用于预测现有化合物的毒性,而且可用于优先考虑计划合成或获取的化合物。在这里,我介绍了各种属性选择方法和机器学习算法相结合的基准测试结果,以及它们在Tox21 Data Challenge数据集中的应用。最佳执行方法:使用“旋转森林” / ADTree分类器进行属性选择的“最佳第一”可为大多数测试案例提供良好的准确性。对于12个目标中的11个,最终评估集的AUROC值≥0.72,而对于三个目标,AUROC值≥0.80,平均AUROC为0.784±0.069。即使对于非常大的数据库,二维描述符集的使用也可以实现快速筛选和化合物优先级排序。该项目中使用的开源工具使所介绍的方法广泛可用,并鼓励社区进一步改善所提出的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号