首页> 外文期刊>Frontiers in Neurorobotics >A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating
【24h】

A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating

机译:一种用于到达和抓取的神经动态体系结构,集成了感知和运动生成,并支持在线更新

获取原文
           

摘要

Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp.
机译:对于任何与环境互动的自主机器人而言,到达并抓住物体都是一项基本技能。尽管对于成年人来说,这项技能显得微不足道,他们毫不费力地捡起了以前从未见过的物体,但对于其他动物,人类婴儿以及大多数自主机器人来说,却很难。在动作准备和执行期间的任何时间,如果视觉场景发生变化(大约100毫秒的延迟),则到达的人的动作都会更新。在线更新的功能突显了人们对感知,运动计划和运动生成的紧密集成。在这里,我们报告了一种努力,以重现这种紧密集成在伸手可及的神经动力学过程模型中的过程,该模型涵盖了在统一建模框架(动态场理论)中从视觉到运动生成的完整路径。所有必需的过程都实现为时间连续的动力学系统,该系统对神经种群激活时间的演变进行建模。总体水平的神经过程引起对对象的注意选择,对象形状和姿势的估计以及姿势参数到合适的运动参数的映射。一旦选择了目标对象,其姿势参数就会耦合到运动生成的神经动力学中,从而姿势变化会通过体系结构传播,以在线更新执行的运动。通过在配备Kinect传感器的拟人化机器人手臂上实现神经体系结构,我们通过抓住木制物体来评估模型。它们的大小,形状和姿势是根据基于特征场的场景感知神经模型估计的。触及和抓握动作的顺序组织是由行为组织的神经动力学中的一系列动态不稳定性产生的,该过程使神经控制器从动作的一个阶段有效地切换到下一阶段。轨迹形成本身是由势场方法的动力学系统驱动的。通过显示对象在到达阶段的移动或旋转会导致移动计划的在线适应和成功完成抓握,来突出显示在线更新的新兴能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号