首页> 外文期刊>Future Internet >Simple and Efficient Computational Intelligence Strategies for Effective Collaborative Decisions
【24h】

Simple and Efficient Computational Intelligence Strategies for Effective Collaborative Decisions

机译:用于有效协作决策的简单高效的计算智能策略

获取原文

摘要

We approach scalability and cold start problems of collaborative recommendation in this paper. An intelligent hybrid filtering framework that maximizes feature engineering and solves cold start problem for personalized recommendation based on deep learning is proposed in this paper. Present e-commerce sites mainly recommend pertinent items or products to a lot of users through personalized recommendation. Such personalization depends on large extent on scalable systems which strategically responds promptly to the request of the numerous users accessing the site (new users). Tensor Factorization (TF) provides scalable and accurate approach for collaborative filtering in such environments. In this paper, we propose a hybrid-based system to address scalability problems in such environments. We propose to use a multi-task approach which represent multiview data from users, according to their purchasing and rating history. We use a Deep Learning approach to map item and user inter-relationship to a low dimensional feature space where item-user resemblance and their preferred items is maximized. The evaluation results from real world datasets show that, our novel deep learning multitask tensor factorization (NeuralFil) analysis is computationally less expensive, scalable and addresses the cold-start problem through explicit multi-task approach for optimal recommendation decision making.
机译:本文探讨了协作推荐的可扩展性和冷启动问题。提出了一种智能混合过滤框架,该框架可以最大化特征工程并解决基于深度学习的个性化推荐冷启动问题。当前的电子商务站点主要通过个性化推荐向许多用户推荐相关商品或产品。这种个性化很大程度上取决于可伸缩系统,该系统可策略性地迅速响应访问该站点的众多用户(新用户)的请求。 Tensor分解(TF)为此类环境中的协作过滤提供了可扩展且准确的方法。在本文中,我们提出了一种基于混合的系统来解决此类环境中的可伸缩性问题。我们建议使用多任务方法,根据用户的购买和评分历史记录来表示用户的多视图数据。我们使用深度学习方法将项目和用户之间的相互关系映射到低维特征空间,在该空间中,项目与用户的相似度及其首选项目得以最大化。来自现实世界数据集的评估结果表明,我们新颖的深度学习多任务张量因子分解(NeuralFil)分析在计算上更便宜,可扩展,并通过显式多任务方法解决冷启动问题,以实现最佳推荐决策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号