首页> 外文期刊>Energies >Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate
【24h】

Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate

机译:风力涡轮机通过具有理想学习率的新型循环Chebyshev神经网络控制来驱动PM同步发电机

获取原文

摘要

A permanent magnet (PM) synchronous generator system driven by wind turbine (WT), connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN) and amended particle swarm optimization (PSO) to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system driven by WT is an unknown non-linear and time-varying dynamic system, the on-line training novel recurrent Chebyshev NN control system is developed to regulate DC voltage of the AC-DC converter and AC voltage of the DC-AC converter connected with smart grid. Furthermore, the variable learning rate of the novel recurrent Chebyshev NN is regulated according to discrete-type Lyapunov function for improving the control performance and enhancing convergent speed. Finally, some experimental results are shown to verify the effectiveness of the proposed control method for a WT driving a PM synchronous generator system in smart grid.
机译:由风力涡轮机(WT)驱动的永磁(PM)同步发电机系统,通过新颖的Chebyshev神经网络(NN)和修正的粒子群优化算法()通过交流-直流转换器和直流-交流转换器与智能电网连接PSO)来调节两个功率转换器中的输出功率和输出电压。由于由WT驱动的PM同步发电机系统是未知的非线性且时变的动态系统,因此开发了在线训练的新型Chebyshev NN递归神经控制系统,以调节AC-DC转换器的DC电压和AC-DC转换器的AC电压。 DC-AC转换器与智能电网连接。此外,根据离散型Lyapunov函数调节新型循环式Chebyshev NN的可变学习率,以提高控制性能并提高收敛速度。最后,一些实验结果证明了所提出的控制方法对WT驱动智能电网中的永磁同步发电机系统的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号