首页> 外文期刊>Geosphere >Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal: An atypical example of channel flow during the Himalayan orogeny
【24h】

Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal: An atypical example of channel flow during the Himalayan orogeny

机译:尼泊尔中部喜马拉雅山安纳布尔纳峰-道拉吉里喜马拉雅山的中地壳变形:喜马拉雅造山过程中河道流动的非典型例子

获取原文
       

摘要

The channel-flow model for the Greater Himalayan Sequence (GHS) of the Himalayan orogen involves a partially molten, rheologically weak, mid-crustal layer a€?flowinga€? southward relative to the upper and lower crust during late Oligocenea€“Miocene. Flow was driven by topographic overburden, underthrusting, and focused erosion. We present new structural and thermobarometric analyses from the GHS in the Annapurna-Dhaulagiri Himalaya, central Nepal; these data suggest that during exhumation, the GHS cooled, strengthened, and transformed from a weak a€?active channela€? to a strong a€?channel pluga€? at greater depths than elsewhere in the Himalaya. After strengthening, continued convergence resulted in localized top-southwest (top-SW) shortening on the South Tibetan detachment system (STDS). The GHS in the Annapurna-Dhaulagiri Himalaya displays several geological features that distinguish it from other Himalayan regions. These include reduced volumes of leucogranite and migmatite, no evidence for partial melting within the sillimanite stability field, reduced structural thickness, and late-stage top-southwest shortening in the STDS. New and previously published structural and thermobarometric constraints suggest that the channel-flow model can be applied to mid-Eocenea€“early Miocene mid-crustal evolution of the GHS in the Annapurna-Dhaulagiri Himalaya. However, pressure-temperature-time (PTt) constraints indicate that following peak conditions, the GHS in this region did not undergo rapid isothermal exhumation and widespread sillimanite-grade decompression melting, as commonly recorded elsewhere in the Himalaya. Instead, lower-than-typical structural thickness and melt volumes suggest that the upper part of the GHS (Upper Greater Himalayan Sequence [UGHS]the proposed channel) had a greater viscosity than in other Himalayan regions. We suggest that viscosity-limited, subdued channel flow prevented exhumation on an isothermal trajectory and forced the UGHS to exhume slowly. These findings are distinct from other regions in the Himalaya. As such, we describe the mid-crustal evolution of the GHS in the Annapurna-Dhaulagiri Himalaya as an atypical example of channel flow during the Himalayan orogeny.
机译:喜马拉雅造山带大喜马拉雅层序(GHS)的通道流模型涉及部分熔融,流变弱的中地壳层“流动”。在中新世晚期晚寡相中相对于上下地壳向南。流量是由地形上覆,下冲和集中侵蚀驱动的。我们提供了来自尼泊尔中部Annapurna-Dhaulagiri喜马拉雅山GHS的新结构和气压计分析;这些数据表明,在尸体挖掘过程中,GHS从弱的活动通道降温,增强并转变。强大的渠道插件比喜马拉雅山其他任何地方都深。加固后,持续的收敛导致南藏西南脱离体系(STDS)的局部西南偏西(top-西南)缩短。 Annapurna-Dhaulagiri喜马拉雅山的GHS具有几个地质特征,使其与其他喜马拉雅地区区分开来。这些包括减少的白云石和蒙脱石的体积,在硅线石稳定域内没有部分熔融的证据,结构厚度减小,以及STDS的晚期西南偏东缩短。新的和先前发布的结构和热压约束表明,通道流模型可以应用于安纳布尔纳峰-道拉吉里-喜马拉雅山中新世始-中新世早期中新世地壳演化。但是,压力-温度-时间(PTt)约束条件表明,在峰值条件之后,该区域的GHS并未像喜马拉雅山其他地方通常记录的那样,经历了快速等温回火和硅线石级减压融化。取而代之的是,低于典型的结构厚度和熔体体积表明,GHS的上部(拟建通道的上部大喜马拉雅层序[UGHS])比其他喜马拉雅地区的粘度更高。我们建议,粘度有限,柔和的通道流动会阻止在等温轨迹上发掘尸体,并迫使UGHS缓慢发掘。这些发现与喜马拉雅山的其他地区截然不同。因此,我们将安纳布尔纳峰-道拉吉里峰喜马拉雅山中GHS的中壳演化描述为喜马拉雅造山过程中通道流动的非典型例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号