首页> 外文期刊>European physical journal >A purely algebraic construction of a gauge and?renormalization?group invariant scalar glueball operator
【24h】

A purely algebraic construction of a gauge and?renormalization?group invariant scalar glueball operator

机译:量规和“归一化”组不变标量胶球算子的纯代数构造

获取原文

摘要

This paper presents a complete algebraic proof of the renormalizability of the gauge invariant d=4 operator Fμν2(x) to all orders of perturbation theory in pure Yang–Mills gauge theory, whereby working in the Landau gauge. This renormalization is far from being trivial as mixing occurs with other d=4 gauge variant operators, which we identify explicitly. We determine the mixing matrix Z to all orders in perturbation theory by using only algebraic arguments and consequently we can uncover a renormalization group invariant by using the anomalous dimension matrix Γ derived from Z. We also present a future plan for calculating the mass of the lightest scalar glueball with the help of the framework we have set up.
机译:本文提供了一个完整的代数证明,证明了规范不变d = 4算符Fμν2(x)对纯Yang-Mills规范理论中所有扰动理论的阶数,从而可以在Landau规范中工作。由于与其他d = 4规格变型算子(我们明确确定)发生了混合,因此这种重新规范化并非易事。我们仅使用代数参数就可以确定扰动理论中所有阶的混合矩阵Z,因此可以使用从Z得出的反常维矩阵Γ来发现重归一化组不变量。我们还提出了一个未来计划,用于计算最轻质量在我们建立的框架的帮助下进行标量胶球。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号