首页> 外文期刊>EURASIP journal on advances in signal processing >Kernel generalized neighbor discriminant embedding for SAR automatic target recognition
【24h】

Kernel generalized neighbor discriminant embedding for SAR automatic target recognition

机译:SAR主动目标识别的核广义邻居判别嵌入。

获取原文

摘要

In this paper, we propose a new supervised feature extraction algorithm in synthetic aperture radar automatic target recognition (SAR ATR), called generalized neighbor discriminant embedding (GNDE). Based on manifold learning, GNDE integrates class and neighborhood information to enhance discriminative power of extracted feature. Besides, the kernelized counterpart of this algorithm is also proposed, called kernel-GNDE (KGNDE). The experiment in this paper shows that the proposed algorithms have better recognition performance than PCA and KPCA.
机译:在本文中,我们提出了一种新的合成孔径雷达自动目标识别(SAR ATR)中的监督特征提取算法,称为广义邻居判别嵌入(GNDE)。基于多方面的学习,GNDE集成了类别和邻域信息,以增强提取特征的判别能力。此外,还提出了该算法的内核化对应物,称为kernel-GNDE(KGNDE)。实验表明,该算法具有比PCA和KPCA更好的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号