...
首页> 外文期刊>Electronic Communications in Probability >The Law of the Hitting Times to Points by a Stable Lévy Process with No Negative Jumps
【24h】

The Law of the Hitting Times to Points by a Stable Lévy Process with No Negative Jumps

机译:稳定的Lévy过程的击球时间定律,没有负跳

获取原文
           

摘要

Let $X=(X_t)_{t ge 0}$ be a stable Levy process of index $lpha in (1,2)$ with the Levy measure $u(dx) = (c/x^{1+lpha}) I_{(0,infty)}(x) dx$ for $c>0$, let $x>0$ be given and fixed, and let $au_x = inf{ t>0 : X_t=x }$ denote the first hitting time of $X$ to $x$. Then the density function $f_{au_x}$ of $au_x$ admits the following series representation: $$f_{au_x}(t) = rac{x^{lpha-1}}{pi ( Gamma(-lpha) t)^{2-1/lpha}} sum_{n=1}^infty igg[(-1)^{n-1} sin(pi/lpha) rac{Gamma(n-1/lpha)}{Gamma(lpha n-1)} Big(rac{x^lpha}{c Gamma(-lpha)t} Big)^{n-1} $$ $$- sinBig(rac{n pi}{lpha}Big) rac{Gamma(1+n/lpha)}{n!} Big(rac{x^lpha}{c Gamma(-lpha)t}Big)^{(n+1)/lpha-1} igg]$$ for $t>0$. In particular, this yields $f_{au_x}(0+)=0$ and $$ f_{au_x}(t) sim rac{x^{lpha-1}}{Gamma(lpha-1), Gamma(1/lpha)} (c Gamma(-lpha)t)^{-2+1/lpha} $$ as $t ightarrow infty$. The method of proof exploits a simple identity linking the law of $au_x$ to the laws of $X_t$ and $sup_{0 le s le t} X_s$ that makes a Laplace inversion amenable. A simpler series representation for $f_{au_x}$ is also known to be valid when $x<0$.
机译:假设$ X =(X_t)_ {t ge 0} $是稳定的Levy索引$ alpha in(1,2)$的Levy过程,其中Levy度量$ nu(dx)=(c / x ^ { 1+ alpha})I _ {(0, infty)}(x)dx $ for $ c> 0 $,令$ x> 0 $给出并固定,让$ tau_x = inf {t> 0:X_t = x } $表示从$ X $到$ x $的第一击中时间。然后$ tau_x $的密度函数$ f _ { tau_x} $接受以下系列表示:$$ f _ { tau_x}(t)= frac {x ^ { alpha-1}} { pi( Gamma(- alpha)t)^ {2-1 / alpha}} sum_ {n = 1} ^ infty bigg [(-1)^ {n-1} sin( pi / alpha) frac { Gamma(n-1 / alpha)} { Gamma( alpha n-1)} Big( frac {x ^ alpha} {c Gamma(- alpha)t} Big) ^ {n-1} $$ $$- sin Big( frac {n pi} { alpha} Big) frac { Gamma(1 + n / alpha)} {n!} Big ( frac {x ^ alpha} {c Gamma(- alpha)t} Big)^ {(n + 1)/ alpha-1} bigg] $$ for $ t> 0 $。特别是,这会产生$ f _ { tau_x}(0 +)= 0 $和$$ f _ { tau_x}(t) sim frac {x ^ { alpha-1}} { Gamma( alpha- 1), Gamma(1 / alpha)}(c Gamma(- alpha)t){{-2 + 1 / alpha} $$作为$ t rightarrow infty $。证明方法利用了一个简单的身份,将$ tau_x $的定律与$ X_t $和$ sup_ {0 le s le t} X_s $的定律联系起来,从而使Laplace倒置可以接受。当$ x <0 $时,$ f _ { tau_x} $的一个更简单的序列表示也有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号