首页> 外文期刊>eLife journal >Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA
【24h】

Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA

机译:具有不同配体特异性的两个适体的结构在RNA的功能领域显示出坚固性

获取原文
           

摘要

DNA’s iconic double helix has made it possibly the most widely recognized biological molecule. The closely related RNA, however, is less well known but just as vital. In contrast with DNA’s typical rigid structure, RNA is more flexible and can fold into a wide range of shapes; this allows RNA molecules to have many jobs. Some RNA molecules form structures called riboswitches. As the name suggests, these act as molecular switches that help cells to respond to the presence of important small molecules. When a riboswitch encounters the right molecule, it changes shape, which in turn changes how the cell behaves. It is very difficult, if not impossible, to predict how a riboswitch recognizes its preferred small molecule. To address this, scientists use a technique called X-ray crystallography to directly examine the riboswitch’s structure. Knappenberger, Reiss and Strobel have now determined the structures of two recently discovered riboswitches. The two switches detect molecules called PRPP and ppGpp, respectively. These riboswitches are structurally similar to one that binds to a very different type of chemical called guanidine. The aim was to understand how similar switches respond to different signals. The results reveal that a PRPP riboswitch could become a ppGpp riboswitch just by making a single change to the RNA sequence. Many scientists believe RNA preceded DNA and proteins in some of the earliest organisms on Earth. Understanding how RNAs have evolved and diversified could thus help to understand how early life developed. The results may also help to design synthetic riboswitches for a variety of uses. Since many riboswitches are unique to bacteria, this work could also contribute to the search for new antibiotics.
机译:DNA的标志性双螺旋结构使其可能成为最广泛认可的生物分子。然而,密切相关的RNA鲜为人知,但同样重要。与DNA的典型刚性结构相比,RNA更具灵活性,可以折叠成多种形状。这使RNA分子有许多工作。一些RNA分子形成称为核糖开关的结构。顾名思义,它们充当分子开关,帮助细胞对重要的小分子的存在做出反应。当核糖开关遇到正确的分子时,它会改变形状,从而改变细胞的行为。如果不是不可能的话,很难预测核糖开关如何识别其优选的小分子。为了解决这个问题,科学家使用了一种称为X射线晶体学的技术来直接检查核糖开关的结构。 Knappenberger,Reiss和Strobel现在已经确定了两个最近发现的核糖开关的结构。这两个开关分别检测称为PRPP和ppGpp的分子。这些核糖开关在结构上与结合至非常不同类型的称为胍的化学物质的类似。目的是了解相似的开关如何响应不同的信号。结果表明,仅对RNA序列进行一次更改,PRPP核糖开关就可以变成ppGpp核糖开关。许多科学家认为,在地球上某些最早的生物中,RNA先于DNA和蛋白质。因此,了解RNA的进化和多样化可能有助于了解早期生活的发展。结果也可能有助于设计用于各种用途的合成核糖开关。由于许多核糖开关是细菌特有的,因此这项工作也可能有助于寻找新的抗生素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号