【24h】

Rounding Sum-of-Squares Relaxations

机译:四舍五入平方和松弛

获取原文
           

摘要

We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between these relaxations and the Sum-of-Squares proof system to transform a *combining algorithm* -- an algorithm that maps a distribution over solutions into a (possibly weaker) solution -- into a *rounding algorithm* that maps a solution of the relaxation to a solution of the original problem.Using this approach, we obtain algorithms that yield improved results for natural variants of three well-known problems:1) We give a quasipolynomial-time algorithm that approximates maxx2=1P(x) within an additive factor of P additive approximation, where 0">0 is a constant, P is a degree d=O(1), n-variate polynomial with nonnegative coefficients, and P is the spectral norm of a matrix corresponding to P's coefficients.Beyond being of interest in its own right, obtaining such an approximation for general polynomials (with possibly negative coefficients) is a long-standing open question in quantum information theory, and our techniques have already led to improved results in this area (Brand~{a}o and Harrow, STOC '13).2) We give a polynomial-time algorithm that, given a subspace VRn of dimension d that (almost) contains the characteristic function of a set of size nk , finds a vector vV that satisfies Eivi4(d?13k(Eivi2)2).This is a natural analytical relaxation of the problem of finding the sparsest element in a subspace, and is also motivated by a connection to the Small Set Expansion problem shown by Barak et al. (STOC 2012).In particular our results yield an improvement of the previous best known algorithms for small set expansion in a certain range of parameters.3) We use this notion of L4 vs. L2 sparsity to obtain a polynomial-time algorithm with substantially improved guarantees for recovering a planted sparse vector v in a random d-dimensional subspace of Rn.If v has n nonzero coordinates, we can recover it with high probability whenever O(min(1nd2)) . In particular, when dn , this recovers a planted vector with up to (n) nonzero coordinates.When dn23 , our algorithm improves upon existing methods based on comparing the L1 and L norms, which intrinsically require O1d .
机译:我们提出了一种通用的方法,用于对通过Sum-of-Squares方法(Lasserre层次结构)获得的半确定编程松弛进行四舍五入。我们的方法是基于使用这些松弛和Sum-of-Squares证明系统之间的联系来将* combining算法*转换为*舍入算法,该算法将解决方案的分布映射到一个(可能较弱的)解决方案。将该松弛解映射到原始问题的解的算法*。使用这种方法,我们获得了针对三个著名问题的自然变体产生改进结果的算法:1)我们给出了近似maxx2的拟多项式时间算法在P加法逼近的加法因子内= 1P(x),其中0“> 0是常数,P是度d = O(1),具有非负系数的n变量多项式,并且P是a的谱范数与P的系数相对应的矩阵。除本身感兴趣的以外,获得通用多项式(可能为负系数)的近似值是量子信息理论中一个长期存在的开放问题,我们的技术已经d以改善该领域的结果(Brand 〜{a} o和Harrow,STOC '13)。2)我们给出了多项式时间算法,该算法在给定维数为d的子空间VRn时,几乎包含了大小为nk的集合,找到满足Eivi4(d?13k(Eivi2)2)的向量vV。这是对在子空间中找到最稀疏元素的问题的自然分析放松,并且也受与Barak等人展示的小集扩展问题。 (STOC 2012)。特别是我们的结果对以前在某些参数范围内进行小集扩展的最著名算法进行了改进.3)我们使用L4 vs.L2稀疏性的这一概念来获得具有显着性的多项式时间算法改进了在Rn的随机d维子空间中恢复种植的稀疏向量v的改进保证。如果v具有n个非零坐标,则只要O(min(1nd2))都可以高概率地恢复它。特别是当dn时,它将恢复具有最多(n)个非零坐标的种植矢量。当dn23时,我们的算法基于对L1和L范数进行比较的基础上对现有方法进行了改进,这些方法本质上需要O1d。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号