首页> 外文期刊>International Scholarly Research Notices >Gait Recognition Based on Invariant Leg Classification Using a Neuro-Fuzzy Algorithm as the Fusion Method
【24h】

Gait Recognition Based on Invariant Leg Classification Using a Neuro-Fuzzy Algorithm as the Fusion Method

机译:基于神经模糊算法的融合不变腿分类的步态识别

获取原文

摘要

This paper presents a human gait recognition algorithm based on a leg gesture separation. Main innovation in this paper is gait recognition using leg gesture classification which is invariant to covariate conditions during walking sequence and just focuses on underbody motions and a neuro-fuzzy combiner classifier (NFCC) which derives a high precision recognition system. At the end, performance of the proposed algorithm has been validated by using the HumanID Gait Challenge data set (HGCD), the largest gait benchmarking data set with 122 objects with different realistic parameters including viewpoint, shoe, surface, carrying condition, and time. And it has been compared to recent algorithm of gait recognition.
机译:本文提出了一种基于腿部手势分离的步态识别算法。本文的主要创新是使用腿部手势分类进行步态识别,该步态分类在步行过程中不会因协变条件而变化,仅着重于底部运动和神经模糊合成器分类器(NFCC),可得出高精度识别系统。最后,通过使用HumanID步态挑战数据集(HGCD)验证了所提出算法的性能,该数据集是具有122个对象的最大步态基准数据集,这些对象具有不同的现实参数,包括视点,鞋子,表面,携带条件和时间。并将其与最新的步态识别算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号