首页> 外文期刊>Advances in Nanoparticles >Effect of Lithium Chloride on the Fibre Length Distribution, Processing Temperature and the Rheological Properties of High-Yield-Pulp-Fibre-Reinforced Modified Bio-Based Polyamide 11 Composite
【24h】

Effect of Lithium Chloride on the Fibre Length Distribution, Processing Temperature and the Rheological Properties of High-Yield-Pulp-Fibre-Reinforced Modified Bio-Based Polyamide 11 Composite

机译:氯化锂对高产量浆纤维改性生物基聚酰胺11复合材料纤维长度分布,加工温度和流变性能的影响

获取原文
           

摘要

The aim of this work was to investigate the effect of lithium chloride (LiCl) on the fibre length distribution, melting temperature and the rheological characteristics of high yield pulp fibre reinforced polyamide biocomposite. The inorganic salt lithium chloride (LiCl) was used to decrease the melting and processing temperature of bio-based polyamide 11. The extrusion method and Brabender mixer approaches were used to carry out the compounding process. The densities and fibre content were found to be increased after processing using both compounding methods. The HYP fibre length distribution analysis realized using the FQA equipment showed an important fibre-length reduction after processing by both techniques. The rheological properties of HYP-reinforced net and modified bio-based polyamide 11 “PA11” (HYP/PA11) composite were investigated using a capillary rheometer. The rheological tests were performed in function of the shear rate for different temperature conditions. The low-temperature process compounding had higher shear viscosity; this was because during the process the temperature was low and the mixing and melting were induced by the high shear rate created during compounding process. Experimental test results using the extrusion process showed a steep decrease in shear viscosity with increasing shear rate, and this melt-flow characteristic corresponds to shear-thinning behavior in HYP/PA11, and this steep decrease in the melt viscosity can be associated to the hydrolyse reaction of nylon for high pulp fibre moisture content at high temperature. In addition to the low processing temperature, the melt viscosity of the biocomposite using the Brabender mixer approach increases with increasing shear rate, and this stability in the increase even at high shear rate for high pulp moisture content is associated to the presence of inorganic salt lithium chloride which creates the hydrogen bonds with pulp during the compounding process.
机译:这项工作的目的是研究氯化锂(LiCl)对纤维长度分布,熔融温度和高产率纸浆纤维增强聚酰胺生物复合材料流变特性的影响。无机盐氯化锂(LiCl)用于降低生物基聚酰胺11的熔融和加工温度。挤出方法和Brabender混合器方法用于进行混合过程。发现使用两种复合方法加工后,密度和纤维含量均增加。使用FQA设备实现的HYP纤维长度分布分析表明,两种技术在加工后都显着降低了纤维长度。使用毛细管流变仪研究了HYP增强网和改性生物基聚酰胺11“ PA11”(HYP / PA11)复合材料的流变性能。在不同温度条件下,根据剪切速率进行流变测试。低温工艺配混具有较高的剪切粘度;这是因为在此过程中温度较低,并且由于在混合过程中产生的高剪切速率而导致混合和熔化。使用挤出工艺的实验测试结果表明,剪切粘度随剪切速率的增加而急剧下降,并且该熔体流动特性与HYP / PA11中的剪切稀化行为相对应,并且熔体粘度的这种急剧下降可能与水解有关。尼龙在高温下对高纸浆纤维含水量的反应除了较低的加工温度外,使用Brabender混合器方法的生物复合材料的熔体粘度随剪切速率的增加而增加,即使对于高纸浆水分含量,即使在高剪切速率下,这种增加的稳定性也与无机盐锂的存在有关在混合过程中与纸浆产生氢键的氯化物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号