首页> 外文期刊>International Journal of Health Geographics >Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe
【24h】

Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe

机译:气候在津巴布韦疟疾发病率年际变化中的作用的时空分析

获取原文

摘要

Background On the fringes of endemic zones climate is a major determinant of inter-annual variation in malaria incidence. Quantitative description of the space-time effect of this association has practical implications for the development of operational malaria early warning system (MEWS) and malaria control. We used Bayesian negative binomial models for spatio-temporal analysis of the relationship between annual malaria incidence and selected climatic covariates at a district level in Zimbabwe from 1988–1999. Results Considerable inter-annual variations were observed in the timing and intensity of malaria incidence. Annual mean values of average temperature, rainfall and vapour pressure were strong positive predictors of increased annual incidence whereas maximum and minimum temperature had the opposite effects. Our modelling approach adjusted for unmeasured space-time varying risk factors and showed that while year to year variation in malaria incidence is driven mainly by climate, the resultant spatial risk pattern may to large extent be influenced by other risk factors except during high and low risk years following the occurrence of extremely wet and dry conditions, respectively. Conclusion Our model revealed a spatially varying risk pattern that is not attributable only to climate. We postulate that only years characterized by extreme climatic conditions may be important for developing climate based MEWS and for delineating areas prone to climate driven epidemics. However, the predictive value of climatic risk factors identified in this study still needs to be evaluated.
机译:背景在流行区的边缘,气候是疟疾发病率年际变化的主要决定因素。这种关联的时空效应的定量描述对实际的疟疾预警系统(MEWS)和疟疾控制的发展具有实际意义。我们使用贝叶斯负二项式模型对1988-1999年津巴布韦地区一级的年度疟疾发病率与选定的气候协变量之间的关系进行时空分析。结果在疟疾发病的时间和强度上观察到相当大的年际变化。平均温度,降雨和蒸气压的年均值是增加年发病率的有力的正向预测因子,而最高和最低温度则相反。我们的建模方法针对未测量的时空变化风险因素进行了调整,结果表明,尽管疟疾发病率的逐年变化主要是由气候驱动的,但除了高风险和低风险期间,由此产生的空间风险模式可能在很大程度上受到其他风险因素的影响。分别在极端潮湿和干燥条件发生后的第二年。结论我们的模型揭示了一个空间变化的风险模式,而这种风险模式不仅是气候造成的。我们假设只有以极端气候条件为特征的年份对于开发基于气候的MEWS以及确定容易受到气候驱动的流行病的区域可能很重要。但是,本研究中确定的气候危险因素的预测价值仍需要评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号