首页> 外文期刊>International Journal of Distributed Sensor Networks >A Novel Distributed Online Anomaly Detection Method in Resource-Constrained Wireless Sensor Networks
【24h】

A Novel Distributed Online Anomaly Detection Method in Resource-Constrained Wireless Sensor Networks

机译:资源受限的无线传感器网络中一种新型的分布式在线异常检测方法

获取原文
获取外文期刊封面目录资料

摘要

In this paper, a novel distributed online anomaly detection method in resource-constrained WSNs was proposed. Firstly, the spatiotemporal correlation existing in the sensed data was exploited and a series of single anomaly detectors were built in each distributed deployment sensor node based on ensemble learning theory. Secondly, these trained detectors were broadcasted to the member sensor nodes in the cluster, combining with its trained detector, and the initial ensemble detector was built. Thirdly, considering resources-constrained WSNs, ensemble pruning based on biogeographical based optimization (BBO) was employed in the cluster head node to obtain an optimized subset of ensemble members. Further, the pruned ensemble detector coded by the state matrix was broadcasted to each member sensor nodes for the distributed online global anomaly detection. Finally, the experiments operated on a real WSN dataset demonstrated the effectiveness of the proposed method.
机译:本文提出了一种在资源受限的无线传感器网络中分布式在线异常检测的新方法。首先,利用集成学习理论,利用感知数据中存在的时空相关性,在每个分布式部署传感器节点中建立一系列单个异常检测器。其次,将这些训练好的检测器与其训练后的检测器相结合,广播到集群中的成员传感器节点,从而构建了初始的整体检测器。第三,考虑到资源受限的无线传感器网络,在簇头节点中采用基于生物地理优化(BBO)的整体修剪,以获得整体成员的优化子集。此外,将由状态矩阵编码的修剪后的集合检测器广播到每个成员传感器节点,以进行分布式在线全局异常检测。最后,在真实的WSN数据集上进行的实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号