首页> 外文期刊>International Journal of Advanced Robotic Systems >Optimal Trajectory Planning and Coordinated Tracking Control Method of Tethered Space Robot Based on Velocity Impulse:
【24h】

Optimal Trajectory Planning and Coordinated Tracking Control Method of Tethered Space Robot Based on Velocity Impulse:

机译:基于速度冲量的系留空间机器人最优轨迹规划与协调跟踪控制方法:

获取原文
           

摘要

The tethered space robot (TSR) is a new concept of space robot which consists of a robot platform, space tether and operation robot. This paper presents a multi-objective optimal trajectory planning and a coordinated tracking control scheme for TSR based on velocity impulse in the approaching phase. Both total velocity impulse and flight time are included in this optimization. The non-dominated sorting genetic algorithm is employed to obtain the optimal trajectory Pareto solution using the TSR dynamic model and optimal trajectory planning model. The coordinated tracking control scheme utilizes optimal velocity impulse. Furthermore, the PID controller is designed in order to compensate for the distance measurement errors. The PID control force is optimized and distributed to thrusters and the space tether using a simulated annealing algorithm. The attitude interferential torque of the space tether is compensated a using time-delay algorithm through reaction wheels. The simulation results show that the multi-objective optimal trajectory planning method can reveal the relationships among flight time, fuel consumption, planar view angle and velocity impulse number. This method can provide a series of optimal trajectory according to a number of special tasks. The coordinated control scheme can significantly save thruster fuel for tracking the optimal trajectory, restrain the attitude interferential torque produced by space tether and maintain the relative attitude stability of the operation robot.
机译:系留空间机器人(TSR)是空间机器人的新概念,它由一个机器人平台,一个空间系绳和一个操作机器人组成。提出了一种在接近阶段基于速度脉冲的TSR多目标最优轨迹规划和协调跟踪控制方案。此优化中包括总速度脉冲和飞行时间。利用TSR动力学模型和最优轨迹规划模型,采用非支配排序遗传算法获得最优轨迹Pareto解。协调跟踪控制方案利用最佳速度脉冲。此外,PID控制器的设计旨在补偿距离测量误差。使用模拟退火算法优化PID控制力,并将其分配给推进器和航天器。使用时滞算法通过反作用轮补偿空间系绳的姿态干扰扭矩。仿真结果表明,多目标最优轨迹规划方法可以揭示飞行时间,油耗,平面视角和速度脉冲数之间的关系。该方法可以根据许多特殊任务提供一系列最佳轨迹。该协调控制方案可以显着节省推进器燃料,以跟踪最优轨迹,抑制空间链产生的姿态干扰扭矩,并保持操作机器人的相对姿态稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号