【24h】

EXPLORING ALS AND DIM DATA FOR SEMANTIC SEGMENTATION USING CNNS

机译:使用CNNS探索用于语义细分的ALS和DIM数据

获取原文

摘要

Over the past years, the algorithms for dense image matching (DIM) to obtain point clouds from aerial images improved significantly. Consequently, DIM point clouds are now a good alternative to the established Airborne Laser Scanning (ALS) point clouds for remote sensing applications. In order to derive high-level applications such as digital terrain models or city models, each point within a point cloud must be assigned a class label. Usually, ALS and DIM are labelled with different classifiers due to their varying characteristics. In this work, we explore both point cloud types in a fully convolutional encoder-decoder network, which learns to classify ALS as well as DIM point clouds. As input, we project the point clouds onto a 2D image raster plane and calculate the minimal, average and maximal height values for each raster cell. The network then differentiates between the classes ground, non-ground, building and no data. We test our network in six training setups using only one point cloud type, both point clouds as well as several transfer-learning approaches. We quantitatively and qualitatively compare all results and discuss the advantages and disadvantages of all setups. The best network achieves an overall accuracy of 96?% in an ALS and 83?% in a DIM test set.
机译:在过去的几年中,用于从航空图像中获取点云的密集图像匹配(DIM)算法得到了显着改进。因此,DIM点云现在可以替代已建立的机载激光扫描(ALS)点云,用于遥感应用。为了导出诸如数字地形模型或城市模型之类的高级应用程序,必须为点云中的每个点分配一个类别标签。通常,由于ALS和DIM的变化特性,它们被标记为不同的分类器。在这项工作中,我们在完全卷积的编码器/解码器网络中探索两种点云类型,该网络学习对ALS和DIM点云进行分类。作为输入,我们将点云投影到2D图像栅格平面上,并计算每个栅格像元的最小,平均和最大高度值。然后,网络区分地面,非地面,建筑物和无数据类别。我们仅使用一种点云类型,两种点云以及几种转移学习方法在六种训练设置中测试我们的网络。我们定量和定性地比较所有结果,并讨论所有设置的优缺点。最好的网络在ALS中的总体精度为96%,在DIM测试仪中的总体精度为83%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号