首页> 外文期刊>Integrating Materials and Manufacturing Innovation >Application-Specific Computational Materials Design via Multiscale Modeling and the Inductive Design Exploration Method (IDEM)
【24h】

Application-Specific Computational Materials Design via Multiscale Modeling and the Inductive Design Exploration Method (IDEM)

机译:通过多尺度建模和归纳设计探索方法(IDEM)的专用计算材料设计

获取原文
           

摘要

The development of materials is a laborious, iterative, expensive, and intuitive process, often requiring decades to transition from early laboratory studies to commercial applications. This research seeks to address this issue by demonstrating a systematic process for linking process-structure-property-performance (PSPP) relations. We argue that the limitations on time for the material development process arise in large part due to lack of effective approaches for exploring the material design space that anticipates application requirements, objectives, and constraints. The material design process employed here utilizes hierarchical multiscale modeling, analytical models, and associated metamodels to construct a set of bottom-up deductive mappings, along with the inductive design exploration method (IDEM) to account for uncertainty in pursuing top-down inductive decision support problems that address application-specific design objectives. The demonstrated problem considers the simultaneous design of ultra-high-performance concrete material and a structural panel able to withstand a 1.5-MPa-ms reflected blast wave impulse. A set of PSPP mappings were constructed across micro-, meso-, and macro-length-scales using analytical expressions and a hierarchical multiscale finite element model at the single fiber, multiple fiber, and structural length scales. The set of PSPP deductive mappings considered seven design variables—panel thickness, fiber pitch, ratio of water to cementitious materials, curing temperature, and volume fractions of fibers, cement, and silica fume—across four hierarchical levels. After the set of deductive PSPP mappings were constructed and validated, ranged sets of feasible values for each design variable were determined via IDEM. Starting with the highest and next-to-higher hierarchical levels as the output and input spaces, respectively, IDEM was implemented via application of three steps—discretization of input variables, projection of discretized sets of input variables with account of uncertainty to a range in the output space, and determination of which sets of discrete input values satisfy the output space requirement(s). By recursively applying these three steps, the PSPP relations were robustly searched for properties, structures, and processes that satisfy the performance requirement(s). The advantages of this approach are the identification of ranged sets of values of design variables and the ability to account for propagated uncertainty. By defining additional mass and cost objectives, the feasible input space was then searched to find the preferred combination of values of design variables that minimized mass and minimized cost while maintaining a robust material and structural design.
机译:材料的开发是一个费力,迭代,昂贵且直观的过程,通常需要数十年才能从早期的实验室研究过渡到商业应用。这项研究试图通过展示一种系统的过程来解决这个问题,该过程将过程-结构-性能-性能(PSPP)关系联系起来。我们认为材料开发过程的时间限制在很大程度上是由于缺乏有效的方法来探索可预测应用需求,目标和约束的材料设计空间而引起的。这里采用的材料设计过程利用分层的多尺度建模,分析模型和关联的元模型来构建一组自下而上的演绎映射,以及归纳设计探索方法(IDEM)来解决追求自上而下的归纳决策支持的不确定性解决特定于应用程序的设计目标的问题。所展示的问题考虑了超高性能混凝土材料和能够承受1.5 MPa-ms反射冲击波脉冲的结构面板的同步设计。使用解析表达式和单根纤维,多根纤维和结构长度尺度上的分层多尺度有限元模型,在微观,中观和宏观尺度上构建了一组PSPP映射。 PSPP演绎映射集考虑了七个设计变量-面板厚度,纤维沥青,水与胶凝材料的比例,固化温度以及纤维,水泥和硅粉的体积分数-跨越四个层次。在构造并验证了一组推论性PSPP映射后,通过IDEM确定了每个设计变量的可行值范围。分别从最高和最高的分层级别作为输出和输入空间开始,IDEM是通过应用三个步骤来实现的:输入变量的离散化,离散化的输入变量集的投影(考虑到不确定范围)。输出空间,以及确定哪组离散输入值满足输出空间要求。通过递归应用这三个步骤,可以稳健地搜索PSPP关系以找到满足性能要求的属性,结构和过程。这种方法的优点是可以识别设计变量值的范围集,并能够解决传播的不确定性。通过定义额外的质量和成本目标,然后搜索可行的输入空间,以找到设计变量值的首选组合,这些变量将质量和成本降至最低,同时又保持了坚固的材料和结构设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号