...
首页> 外文期刊>Atmospheric chemistry and physics >Multifractal evaluation of simulated precipitation intensities from the COSMO NWP model
【24h】

Multifractal evaluation of simulated precipitation intensities from the COSMO NWP model

机译:利用COSMO NWP模型对模拟降水强度进行多重分形评估

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The framework of universal multifractals (UM) characterizes the spatio-temporal variability in geophysical data over a wide range of scales with only a limited number of scale-invariant parameters. This work aims to clarify the link between multifractals (MFs) and more conventional weather descriptors and to show how they can be used to perform a multi-scale evaluation of model data. brbr The first part of this work focuses on a MF analysis of the climatology of precipitation intensities simulated by the COSMO numerical weather prediction model. Analysis of the spatial structure of the MF parameters, and their correlations with external meteorological and topographical descriptors, reveals that simulated precipitation tends to be smoother at higher altitudes, and that the mean intermittency is mostly influenced by the latitude. A hierarchical clustering was performed on the external descriptors, yielding three different clusters, which correspond roughly to Alpine/continental, Mediterranean and temperate regions. Distributions of MF parameters within these three clusters are shown to be statistically significantly different, indicating that the MF signature of rain is indeed geographically dependent. brbr The second part of this work is event-based and focuses on the smaller scales. The MF parameters of precipitation intensities at the ground are compared with those obtained from the Swiss radar composite during three events corresponding to typical synoptic conditions over Switzerland. The results of this analysis show that the COSMO simulations exhibit spatial scaling breaks that are not present in the radar data, indicating that the model is not able to simulate the observed variability at all scales. A comparison of the operational one-moment microphysical parameterization scheme of COSMO with a more advanced two-moment scheme reveals that, while no scheme systematically outperforms the other, the two-moment scheme tends to produce larger extreme values and more discontinuous precipitation fields, which agree better with the radar composite.
机译:通用多重分形(UM)框架可在仅有限数量的尺度不变参数的情况下,在大范围尺度上表征地球物理数据的时空变化。这项工作旨在阐明多重分形(MF)与更常规的天气描述符之间的联系,并展示如何将它们用于执行模型数据的多尺度评估。 这项工作的第一部分着重于通过COSMO数值天气预报模型模拟的降水强度气候学的MF分析。对MF参数的空间结构及其与外部气象和地形描述符的相关性进行分析后发现,在较高的海拔高度,模拟的降水量趋于平滑,平均间歇性主要受纬度影响。在外部描述符上进行了层次聚类,产生了三个不同的聚类,它们大致对应于高山/大陆,地中海和温带地区。这三个群集中的MF参数分布在统计上显示出显着不同,这表明降雨的MF签名确实与地理位置有关。 这项工作的第二部分基于事件,着重于较小的规模。在对应于瑞士典型天气状况的三个事件中,将地面降水强度的MF参数与从瑞士雷达合成仪获得的MF参数进行了比较。分析结果表明,COSMO仿真显示了雷达数据中不存在的空间缩放断裂,这表明该模型无法模拟所有比例下的观测变化。将COSMO的可操作的一刻微物理参数化方案与更先进的两步式方案进行比较,可以发现,虽然没有一种方案能系统地胜过另一方案,但两步式方案往往会产生更大的极值和更不连续的降水场,从而与雷达组合更好地达成共识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号