首页> 外文期刊>Cybernetics and information technologies: CIT >Linking Datasets Using Semantic Textual Similarity
【24h】

Linking Datasets Using Semantic Textual Similarity

机译:使用语义文本相似性链接数据集

获取原文

摘要

Linked data has been widely recognized as an important paradigm forrepresenting data and one of the most important aspects of supporting its use isdiscovery of links between datasets. For many datasets, there is a significant amountof textual information in the form of labels, descriptions and documentation aboutthe elements of the dataset and the fundament of a precise linking is in the applicationof semantic textual similarity to link these datasets. However, most linking tools sofar rely on only simple string similarity metrics such as Jaccard scores. We presentan evaluation of some metrics that have performed well in recent semantic textualsimilarity evaluations and apply these to linking existing datasets.
机译:链接数据已被广泛认为是表示数据的重要范例,支持数据使用的最重要方面之一是发现数据集之间的链接。对于许多数据集,存在大量的文本信息,包括有关数据集元素的标签,描述和文档形式,并且精确链接的基础在于应用语义文本相似性来链接这些数据集。但是,大多数链接工具只依赖简单的字符串相似性度量标准,例如Jaccard分数。我们对一些在最近的语义文本相似性评估中表现良好的指标进行评估,并将其应用于链接现有数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号