首页> 外文期刊>Applied Physics Research >Kepler′s Ellipse Observed from Newton′s Evolute (1687), Horrebow′s Circle (1717), Hamilton′s Pedal Curve (1847), and Two Contrapedal Curves (28.10.2018)
【24h】

Kepler′s Ellipse Observed from Newton′s Evolute (1687), Horrebow′s Circle (1717), Hamilton′s Pedal Curve (1847), and Two Contrapedal Curves (28.10.2018)

机译:从牛顿的Evolute(1687),Horrebow的圆(1717),Hamilton的踏板曲线(1847)和两条曲线曲线(28.10.2018)观察到的开普勒椭圆

获取原文
           

摘要

Johannes Kepler discovered the very elegant elliptical path of planets with the Sun in one focus of that ellipse in 1605. Kepler inspired generations of researchers to study properties hidden in those elliptical paths. The visible elliptical paths belong to the Aristotelian World. On the other side there are invisible mathematical objects in the Plato's Realm that might describe the mechanism behind those elliptical paths. One such curve belonging to the Plato's Realm discovered Isaac Newton in 1687 - the locus of radii of curvature of that ellipse (the evolute of the ellipse). Are there more curves in the Plato's Realm that could reveal to us additional information about Kepler's ellipse? W.R. Hamilton in 1847 discovered the hodograph of the Kepler's ellipse using the pedal curve with pedal points in both foci (the auxiliary circle of that ellipse). This hodograph depicts the moment of the tangent momentum of orbiting planets. Inspired by the hodograph model we propose newly to use two contrapedal curves of the Kepler's ellipse with contrapedal points in both the Kepler's occupied and Ptolemy's empty foci. Observers travelling along those contrapedal curves might bring new valuable experimental data about the orbital angular velocity of planets and a new version of the Kepler's area law. Based on these contrapedal curves we have defined the moment of the normal momentum. The first derivation of the moment of the normal momentum reveals the torque of the ellipse. This torque of ellipse should contribute to the precession of the Kepler's ellipse. In the Library of forgotten works of Old Masters we have re-discovered the Horrebow's circle (1717) and the Colwell's anomaly H (1993) that might serve as an intermediate step in the solving of the Kepler's Equation (KE). Have we found the Arriadne's Thread leading out of the Labyrinth or are we still lost in the Labyrinth?
机译:约翰内斯·开普勒(Johannes Kepler)于1605年发现了一个非常优雅的椭圆形路径,其中太阳聚焦在椭圆上。可见的椭圆路径属于亚里斯多德世界。另一方面,柏拉图领域中有一些看不见的数学对象,它们可能描述了这些椭圆路径背后的机理。柏拉图领域的一条这样的曲线在1687年发现了艾萨克·牛顿(Isaac Newton)-该椭圆的曲率半径(椭圆的渐开线)轨迹。柏拉图的领域中还有更多曲线可以向我们揭示有关开普勒椭圆的更多信息吗?汉密尔顿(W.R. Hamilton)在1847年发现了开普勒椭圆的全息图,它使用了两个焦点上都有踏板点的踏板曲线(该椭圆的辅助圆)。这幅全息图描绘了绕行行星切线动量的时刻。受全息图模型的启发,我们新近建议使用开普勒椭圆的两条对立曲线,在开普勒被占领的地方和托勒密的空焦点中使用对立的点。沿着那些对角线弯曲的观测者可能会带来有关行星轨道角速度的新的有价值的实验数据和开普勒面积定律的新版本。基于这些对立曲线,我们定义了法向动量的矩。法向动量矩的一阶推导揭示了椭圆的转矩。椭圆的这种扭矩应有助于开普勒椭圆的进动。在被遗忘的大师作品库中,我们重新发现了Horrebow圆(1717)和Colwell异常H(1993),它们可能是开普勒方程(KE)求解的中间步骤。我们是否找到了从迷宫中引出的Arriadne螺纹,还是仍迷失在迷宫中?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号