首页> 外文期刊>AIMS Microbiology >Experimental workflow for developing a feed forward strategy to control biomass growth and exploit maximum specific methane productivity of Methanothermobacter marburgensis in a biological methane production process (BMPP)
【24h】

Experimental workflow for developing a feed forward strategy to control biomass growth and exploit maximum specific methane productivity of Methanothermobacter marburgensis in a biological methane production process (BMPP)

机译:在生物甲烷生产过程(BMPP)中制定前馈策略以控制生物量生长并利用马氏甲烷嗜热菌最大比甲烷生产力的实验工作流程

获取原文
           

摘要

Recently, interests for new biofuel generations allowing conversion of gaseous substrate(s) to gaseous product(s) arose for power to gas and waste to value applications. An example is biological methane production process (BMPP) with Methanothermobacter marburgensis. The latter, can convert carbon dioxide (CO2) and hydrogen (H2), having different origins and purities, to methane (CH4), water and biomass. However, these gas converting bioprocesses are tendentiously gas limited processes and the specific methane productivity per biomass amount (qCH4) tends to be low. Therefore, this contribution proposes a workflow for the development of a feed forward strategy to control biomass, growth (rx) and qCH4 in a continuous gas limited BMPP. The proposed workflow starts with a design of experiment (DoE) to optimize media composition and search for a liquid based limitation to control selectively growth. From the DoE it came out that controlling biomass growth was possible independently of the dilution and gassing rate applied while not affecting methane evolution rates (MERs). This was done by shifting the process from a natural gas limited state to a controlled liquid limited growth. The latter allowed exploiting the maximum biocatalytic activity for methane formation of Methanothermobacter marburgensis . An increase of qCH4 from 42 to 129 mmolCH4 g?1 h?1 was achieved by applying a liquid limitation compare with the reference state. Finally, a verification experiment was done to verify the feeding strategy transferability to a different process configuration. This evidenced the ratio of the fed KH2PO4 to rx (R(FKH2PO4/rx)) has an appropriate parameter for scaling feeds in a continuous gas limited BMPP. In the verification experiment CH4 was produced in a single bioreactor step at a methane evolution rate (MER) of 132 mmolCH4*L?1*h?1 at a CH4 purity of 93 [Vol.%].
机译:近来,对于新一代生物燃料的兴趣出现,其允许将气态底物转化为气态产物,以将动力转化为气体,并将废物转化为有价值的应用。一个例子是马尔堡甲烷甲烷杆菌的生物甲烷生产工艺(BMPP)。后者可以将起源和纯度不同的二氧化碳(CO 2 )和氢气(H 2 )转化为甲烷(CH 4 ),水和生物量。然而,这些气体转化生物过程趋向于受气体限制的过程,并且每生物量(qCH 4 )的比甲烷生产率趋于降低。因此,这项贡献提出了一种工作流程,用于开发前馈策略,以控制连续气体受限BMPP中的生物量,生长(r x )和q CH4 。提议的工作流程从设计实验(DoE)开始,以优化培养基成分并搜索基于液体的限制条件以选择性控制生长。从能源部得出的结论是,控制生物量的增长是可能的,而与所施加的稀释和放气速率无关,而不会影响甲烷的释放速率(MERs)。这是通过将过程从天然气受限状态转变为受控液体受限状态来完成的。后者允许利用最大的生物催化活性来产生马尔堡甲烷热甲烷菌。 q CH4 从42增加到129 mmol CH4 g ?1 h ?1 液体极限值与参考状态进行比较。最后,进行了验证实验,以验证进料策略可移植到其他工艺配置中。这证明了进料的KH 2 PO 4 与r x (R(F KH2PO4 / r < sub> x ))具有合适的参数,可以在连续的气体受限BMPP中缩放进料。在验证实验中,CH 4 在单个生物反应器步骤中以132 mmol CH4 * L ?1 的甲烷生成速率(MER)生成。 * h ?1 在CH 4 纯度为93 [Vol。%]时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号