...
首页> 外文期刊>Applied Energy >Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis
【24h】

Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis

机译:分析与相关技术相关的因素,以提高马尔堡甲烷甲烷杆菌的生物量的生产能力和质量

获取原文
获取原文并翻译 | 示例

摘要

The biological conversion of H_2 and CO_2 into CH_4, using methanogenic archaea is an interesting technology for CO_2 conversion, energy storage and biogas upgrading. For an industrial application of this process however, the optimization of the volumetric productivity and the product quality is an important issue. Since the reactants in this fermentation process are, unlike in most microbial fermentations, solely gas-ses, the gas liquid mass transfer is supposed to play an important role on the way to a higher volumetric productivity. This work aimed at investigating the effects of the gassing rate, the reactor pressure, as well as reactor design issues on the performance of Methanothermobacter marburgensis by using continuous cultures. Our results show that biological methanogenesis with M. marburgensis is gas limited. Maximum physiological capacity is not reached yet. The gassing rate influenced mainly the volumetric methane production rate (MER), the reactor pressure influenced mainly the offgas quality. Based on this information, we demonstrated how a combination of increased gas flow rate and increased reactor pressure can be used to reach high volumetric productivity at high offgas quality. Maximum MER was 950 mmol L~(-1) h~(-1) at a CH_4 concentration of 60 Vol.-%, maximum CH_4 concentration reached was 85 Vol.-% at a MER of 255 mmol L~(-1) h~(-1). The reactor design currently limits further increase in gas flow rate and reactor pressure. Therefore Interdisciplinary bridges from bioprocessing to chemical reactor design must be followed in the future to boot this promising bioprocess to gain biomethane via CO_2 fixation.
机译:利用产甲烷古菌将H_2和CO_2转化为CH_4是一种有趣的技术,可用于CO_2转化,能量存储和沼气提纯。然而,对于该方法的工业应用,体积生产率和产品质量的优化是重要的问题。与大多数微生物发酵不同,由于该发酵过程中的反应物仅是气态气体,因此气液传质在提高容积生产率的过程中起着重要作用。这项工作旨在研究放气速率,反应器压力以及反应器设计问题对使用连续培养的马尔堡甲烷杆菌的性能的影响。我们的结果表明,马尔堡分枝杆菌的生物甲烷生成受到气体的限制。尚未达到最大生理容量。放气速率主要影响体积甲烷产生率(MER),反应器压力主要影响尾气质量。根据这些信息,我们证明了如何将增加的气体流速和增加的反应器压力结合起来,以高的废气质量达到较高的容积生产率。 CH_4浓度为60 Vol .-%时最大MER为950 mmol L〜(-1)h〜(-1),MER为255 mmol L〜(-1)时达到的最大CH_4浓度为85 Vol .-% h〜(-1)。目前,反应器设计限制了气体流速和反应器压力的进一步增加。因此,将来必须遵循从生物工艺到化学反应器设计的跨学科桥梁,以启动这一有前途的生物工艺,以通过CO_2固定获得生物甲烷。

著录项

  • 来源
    《Applied Energy 》 |2014年第1期| 155-162| 共8页
  • 作者单位

    Vienna University of Technology, Institute of Chemical Engineering, Gumpendorferstrasse 1a/166-4, 1060 Vienna, Austria;

    Vienna University of Technology, Institute of Chemical Engineering, Gumpendorferstrasse 1a/166-4, 1060 Vienna, Austria;

    Vienna University of Technology, Institute of Chemical Engineering, Gumpendorferstrasse 1a/166-4, 1060 Vienna, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Archaea; Biological methanogenesis; Continuous culture; Gas/liquid mass transfer; CO_2, H_2, CH_4, quantification;

    机译:古细菌;生物甲烷生成;持续文化;气/液传质;CO_2;H_2;CH_4;定量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号