...
首页> 外文期刊>Current Plant Biology >Time-dependent, glucose-regulated Arabidopsis Regulator of G-protein Signaling 1 network ☆
【24h】

Time-dependent, glucose-regulated Arabidopsis Regulator of G-protein Signaling 1 network ☆

机译:时间依赖性,葡萄糖调节的G蛋白信号1网络拟南芥调节剂☆

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Abstract Plants lack 7-transmembrane, G-protein coupled receptors (GPCRs) because the G alpha subunit of the heterotrimeric G protein complex is “self-activating”—meaning that it spontaneously exchanges bound GDP for GTP without the need of a GPCR. In lieu of GPCRs, most plants have a seven transmembrane receptor-like regulator of G-protein signaling (RGS) protein, a component of the complex that keeps G-protein signaling in its non-activated state. The addition of glucose physically uncouples AtRGS1 from the complex through specific endocytosis leaving the activated G protein at the plasma membrane. The complement of proteins in the AtRGS1/G-protein complex over time from glucose-induced endocytosis was profiled by immunoprecipitation coupled to mass spectrometry (IP-MS). A total of 119 proteins in the AtRGS1 complex were identified. Several known interactors of the complex were identified, thus validating the approach, but the vast majority (93/119) were not known previously. AtRGS1 protein interactions were dynamically modulated by d -glucose. At low glucose levels, the AtRGS1 complex is comprised of proteins involved in transport, stress and metabolism. After glucose application, the AtRGS1 complex rapidly sheds many of these proteins and recruits other proteins involved in vesicular trafficking and signal transduction. The profile of the AtRGS1 components answers several questions about the type of coat protein and vesicular trafficking GTPases used in AtRGS1 endocytosis and the function of endocytic AtRGS1. Keywords Heterotrimeric G-protein ; Membrane protein complexes ; Tandem affinity purification ; Mass spectrometry ; Glucose signaling prs.rt("abs_end"); 1. Introduction The Arabidopsis G-proteins, despite having a simpler repertoire than that in metazoans, impart many physiological and biochemical responses and affect growth and development in plants [1] . In metazoans, the duration of G-protein signal termination is dependent on (1) the residence time of the GPCR agonist, (2) the number of activating interactions between the cognate GPCR coupled to the G protein complex over time and (3) the rate of deactivation through intrinsic GTPase activity of the Gα protein. The latter is accelerated by interaction with a group of regulator of G protein signaling (RGS) proteins, accelerating hydrolysis of GαGTP into GαGDP and returning the G protein complex to the resting state [2] . It is now well established that plants use a distinct mechanism to regulate G-protein signaling from metazoans and differ in many aspects. First, plant cells lack G-protein coupled receptors (GPCR) that stimulate guanine nucleotide exchange. Second, plant Gα proteins exchange guanine nucleotides spontaneously in vitro . Third, all plants, except the cereals, contain a receptor-like RGS protein that deactivates until decoupled from the G protein complex. In Arabidopsis , the RGS protein (AtRGS1) has a seven transmembrane (7TM) domain at its N-terminus and a catalytic RGS box at its C-terminal domain [3] , [4] , [5] , [6] and [7] . The mechanism of glucose-induced G protein activation is known. Urano et al. demonstrated that d -glucose recruits WITH NO LYSINE (WNK) kinases to phosphorylate AtRGS1 and that this phosphorylation is necessary and sufficient for endocytosis [7] and [8] . AtRGS1 endocytosis leads to physical uncoupling of AtRGS1 from the Arabidopsis G protein α subunit (AtGPA1) and thus a release of the GAP activity and concomitant sustained activation of G-protein signaling. One of the most intriguing aspects of glucose-regulated, AtRGS1-mediated G-protein activation is that the response is receptive to both signal concentration and timing information, unlike G-protein signaling in animals which is triggered by a threshold of signal [8] . This emergent property has dose and duration reciprocity such that an acute dose of glucose ( e.g. 6%) induces complete AtRGS1 endocytosis in 30?min while a low dose induces endocytosis over many hours [8] . While AtRGS1 is considered an inhibitor of G-protein signaling as a GTPase Activating Protein (GAP), the effect of genetic ablation of AtRGS1 suggests that AtRGS1 is a positive regulator of G-protein signaling [9] . Given that trafficking of AtRGS1 is an important part of plant G protein signaling, we hypothesized that signaling through AtRGS1 is both time and sub-cellular location contingent. Specifically, AtRGS1 signaling from the endosome may be an obligatory aspect of signaling output as has been recently shown for β2-adrenoceptor-mediated signaling [10] . Studies of plant G-proteins in the last decade revealed associations with fundamental biological processes such as sugar perception [11] and [7] , organ development [12] , hormone signaling [13] and [14] , light responsiveness [15] , biotic and abiotic stress [16] , [17] , [18] , [19] and [6] , among others. Sugar-induced signal transduction pathways play significant roles in many physiological process
机译:摘要植物缺乏7跨膜,G蛋白偶联受体(GPCR),因为异三聚体G蛋白复合物的Gα亚基是“自我激活的”,这意味着植物无需GPCR就可以自发地将结合的GDP交换为GTP。代替GPCR,大多数植物都具有G蛋白信号(RGS)蛋白的七个跨膜受体样调节剂,这是使G蛋白信号保持其非激活状态的复合物成分。葡萄糖的添加通过特异性内吞作用使AtRGS1与复合物物理解偶联,从而使活化的G蛋白保留在质膜上。葡萄糖诱导的内吞作用随着时间的推移,AtRGS1 / G蛋白复合物中的蛋白质补体通过免疫沉淀与质谱法(IP-MS)进行分析。在AtRGS1复合物中共鉴定出119种蛋白质。确定了该复合物的几种已知的相互作用物,从而验证了该方法,但之前(92/119)绝大多数是未知的。 AtRGS1蛋白相互作用被d-葡萄糖动态调节。在低葡萄糖水平下,AtRGS1复合物由参与运输,应激和代谢的蛋白质组成。葡萄糖应用后,AtRGS1复合物迅速脱落许多这些蛋白质,并募集其他参与水泡运输和信号转导的蛋白质。 AtRGS1组分的概况​​回答了有关AtRGS1内吞作用中使用的外壳蛋白类型和囊泡运输GTPases以及内吞AtRGS1功能的几个问题。关键词异三聚体G蛋白;膜蛋白复合物;串联亲和纯化;质谱 ;葡萄糖信号传递prs.rt(“ abs_end”); 1.引言拟南芥G蛋白尽管具有比后生动物更简单的库,却能产生许多生理和生化反应并影响植物的生长发育[1]。在后生动物中,G蛋白信号终止的持续时间取决于(1)GPCR激动剂的停留时间,(2)与G蛋白复合物偶联的同源GPCR之间随时间的激活相互作用的数量和(3) Gα蛋白固有的GTPase活性导致失活的速率。后者通过与一组G蛋白信号调节蛋白(RGS)的调节剂相互作用而加速,加速G αGTP水解为G αGDP并使G蛋白复合物返回到G静止状态[2]。现在已经很好地确定,植物使用独特的机制来调节后生动物的G蛋白信号传导,并且在许多方面有所不同。首先,植物细胞缺乏刺激鸟嘌呤核苷酸交换的G蛋白偶联受体(GPCR)。其次,植物Gα蛋白在体外自发地交换鸟嘌呤核苷酸。第三,除谷物外,所有植物均含有受体样的RGS蛋白,该蛋白会失活直至与G蛋白复合物脱钩。在拟南芥中,RGS蛋白(AtRGS1)在其N端具有七个跨膜(7TM)域,在其C端域具有催化性RGS框[3],[4],[5],[6]和[ 7]。葡萄糖诱导的G蛋白活化的机制是已知的。浦野等。证明d-葡萄糖募集了没有赖氨酸(WNK)激酶的磷酸来使AtRGS1磷酸化,并且这种磷酸化对于胞吞作用是必需的和足够的[7]和[8]。 AtRGS1的胞吞作用导致AtRGS1与拟南芥G蛋白α亚基(AtGPA1)发生物理解偶联,从而释放GAP活性并伴随G蛋白信号的持续激活。葡萄糖调节的最有趣的方面之一是,AtRGS1介导的G蛋白活化是信号的浓度和时间信息均能响应,而动物中的G蛋白信号却是由信号阈值触发的[8] 。这种出现的特性具有剂量和持续时间的可逆性,因此,急性剂量的葡萄糖(例如6%)可在30分钟内诱导AtRGS1完全内吞,而低剂量的葡萄糖可在许多小时内诱导内吞[8]。尽管AtRGS1被认为是G蛋白酶激活蛋白(GAP)的G蛋白信号抑制剂,但AtRGS1的基因消融作用表明AtRGS1是G蛋白信号的正调节剂[9]。鉴于AtRGS1的运输是植物G蛋白信号传导的重要组成部分,我们假设通过AtRGS1进行的信号传递既取决于时间,也取决于亚细胞定位。具体来说,来自内体的AtRGS1信号传导可能是信号输出的必然方面,正如最近针对β2-肾上腺素受体介导的信号传导所显示的[10]。过去十年来对植物G蛋白的研究表明,它们与糖的基本生物学过程相关[11]和[7],器官发育[12],激素信号传导[13]和[14],光反应性[15],生物和非生物胁迫[16],[17],[18],[19]和[6]等。糖诱导的信号转导途径在许多生理过程中起着重要作用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号