首页> 外文期刊>Control Theory and Informatics >Pattern recognition system based on support vector machines: HIV-1 integrase inhibitors application
【24h】

Pattern recognition system based on support vector machines: HIV-1 integrase inhibitors application

机译:基于支持向量机的模式识别系统:HIV-1整合酶抑制剂的应用

获取原文

摘要

Support Vector Machines (SVM) represent one of the most promising Machine Learning (ML) tools that can be applied to develop a predictive Quantitative Structure-Activity Relationship (QSAR) models using molecular descriptors. The performance and predictive power of support vector machines (SVM) for regression problems in quantitative structure-activity relationship were investigated. The SVM results are superior to those obtained by artificial neural network and multiple linear regression. These results indicate that the SVM model with the kernel radial basis function can be used as an alternative tool for regression problems in quantitative structure-activity relationship.
机译:支持向量机(SVM)代表了最有前途的机器学习(ML)工具之一,可用于开发使用分子描述符的预测性定量构效关系(QSAR)模型。研究了支持向量机(SVM)对定量构效关系中回归问题的性能和预测能力。 SVM结果优于通过人工神经网络和多元线性回归获得的结果。这些结果表明,具有核径向基函数的SVM模型可以用作定量结构与活动关系中回归问题的替代工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号