...
首页> 外文期刊>Batteries >Machine Learning Approaches for Designing Mesoscale Structure of Li-Ion Battery Electrodes
【24h】

Machine Learning Approaches for Designing Mesoscale Structure of Li-Ion Battery Electrodes

机译:用于设计锂离子电池电极中尺度结构的机器学习方法

获取原文

摘要

We have proposed a data-driven approach for designing the mesoscale porous structures of Li-ion battery electrodes, using three-dimensional virtual structures and machine learning techniques. Over 2000 artificial 3D structures, assuming a positive electrode composed of randomly packed spheres as the active material particles, are generated, and the charge/discharge specific resistance has been evaluated using a simplified physico-chemical model. The specific resistance from Li diffusion in the active material particles (diffusion resistance), the transfer specific resistance of Li+ in the electrolyte (electrolyte resistance), and the reaction resistance on the interface between the active material and electrolyte are simulated, based on the mass balance of Li, Ohm’s law, and the linearized Butler–Volmer equation, respectively. Using these simulation results, regression models, using an artificial neural network (ANN), have been created in order to predict the charge/discharge specific resistance from porous structure features. In this study, porosity, active material particle size and volume fraction, pressure in the compaction process, electrolyte conductivity, and binder/additives volume fraction are adopted, as features associated with controllable process parameters for manufacturing the battery electrode. As a result, the predicted electrode specific resistance by the ANN regression model is in good agreement with the simulated values. Furthermore, sensitivity analyses and an optimization of the process parameters have been carried out. Although the proposed approach is based only on the simulation results, it could serve as a reference for the determination of process parameters in battery electrode manufacturing.
机译:我们提出了一种数据驱动的方法,该方法使用三维虚拟结构和机器学习技术来设计锂离子电池电极的中尺度多孔结构。假设使用由随机堆积的球组成的正极作为活性材料颗粒,则产生了2000多种人工3D结构,并已使用简化的物理化学模型评估了充电/放电比电阻。根据质量,模拟了Li扩散到活性物质颗粒中的比电阻(扩散电阻),Li +在电解质中的转移比电阻(电解质电阻)以及在活性物质和电解质之间的界面上的反应电阻。 Li平衡,欧姆定律和线性化的Butler-Volmer方程。使用这些模拟结果,已经创建了使用人工神经网络(ANN)的回归模型,以便根据多孔结构特征预测充电/放电比电阻。在这项研究中,采用孔隙率,活性材料的粒径和体积分数,压制过程中的压力,电解质电导率以及粘合剂/添加剂的体积分数作为与可控制的制造电池电极工艺参数相关的特征。结果,通过ANN回归模型预测的电极比电阻与模拟值非常吻合。此外,已经进行了敏感性分析和工艺参数的优化。尽管所提出的方法仅基于仿真结果,但可以为确定电池电极制造过程中的工艺参数提供参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号