首页> 外文期刊>RSC Advances >Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries
【24h】

Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries

机译:基于DFT的机器学习在锂离子电池中发育分子电极材料的应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this study, we utilize a density functional theory-machine learning framework to develop a high-throughput screening method for designing new molecular electrode materials. For this purpose, a density functional theory modeling approach is employed to predict basic quantum mechanical quantities such as redox potentials, and electronic properties such as electron affinity, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), for a selected set of organic materials. Both the electronic properties and structural information, such as the numbers of oxygen atoms, lithium atoms, boron atoms, carbon atoms, hydrogen atoms, and aromatic rings, are considered as input variables for the machine learning-based prediction of redox potentials. The large-set of input variables are further downsized using a linear correlation analysis to have six core input variables, namely electron affinity, HOMO, LUMO, HOMO-LUMO gap, the number of oxygen atoms and the number of lithium atoms. The artificial neural network trained using the quasi-Newton method demonstrates a capability for accurately estimating the redox potentials. From the contribution analysis, in which the influence of each input on the target are accessed, we highlight that the electron affinity has the highest contribution to redox potential, followed by the number of oxygen atoms, HOMO-LUMO gap, the number of lithium atoms, LUMO, and HOMO, in order.
机译:在本研究中,我们利用密度泛函理论 - 机器学习框架来开发用于设计新的分子电极材料的高通量筛选方法。为此目的,采用密度泛函理论建模方法来预测所选的电子亲和力,最高占用的分子(HOMO)和最低未占用的分子轨道(LUMO)的基本量子力学算法,例如氧化还原电位,以及电子性质,例如电子亲和力,最低的分子轨道(LumO)。有机材料套。电子性质和结构信息(例如氧原子,锂原子,硼原子,碳原子,氢原子和芳环)被认为是基于机器学习的氧化还原电位的输入变量。使用线性相关性分析进一步缩小了大量输入变量,以具有六个核心输入变量,即电子亲和力,同性恋,亮度,同性恋间隙,氧原子数和锂原子的数量。使用Quasi-Newton方法培训的人工神经网络演示了一种准确地估计氧化还原电位的能力。从贡献分析中,从其中获得每个输入的影响,我们突出了电子亲和力对氧化还原电位的贡献最高,其次是氧原子的数量,Homo-Lumo间隙,锂原子的数量,Lumo和Homo,按顺序。

著录项

  • 来源
    《RSC Advances》 |2018年第69期|共7页
  • 作者单位

    Georgia Inst Technol Sch Mat Sci &

    Engn Computat NanoBio Technol Lab Atlanta GA 30332 USA;

    Georgia Inst Technol Sch Mat Sci &

    Engn Computat NanoBio Technol Lab Atlanta GA 30332 USA;

    Georgia Inst Technol Sch Mat Sci &

    Engn Computat NanoBio Technol Lab Atlanta GA 30332 USA;

    Georgia Inst Technol Sch Mat Sci &

    Engn Computat NanoBio Technol Lab Atlanta GA 30332 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号