...
首页> 外文期刊>Computational and Structural Biotechnology Journal >{DEVELOPMENT} {OF} {MICROORGANISMS} {FOR} CELLULOSE-BIOFUEL {CONSOLIDATED} BIOPROCESSINGS: {METABOLIC} ENGINEERS' {TRICKS}
【24h】

{DEVELOPMENT} {OF} {MICROORGANISMS} {FOR} CELLULOSE-BIOFUEL {CONSOLIDATED} BIOPROCESSINGS: {METABOLIC} ENGINEERS' {TRICKS}

机译:{开发} {OF} {微生物} {FOR}纤维素-生物燃料{合并}生物处理:{代谢}工程师的{技巧}

获取原文
           

摘要

Cellulose waste biomass is the most abundant and attractive substrate for “biorefinery strategies” that are aimed to produce high-value products (e.g. solvents, fuels, building blocks) by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass. Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP). Two paradigms have been applied for such, so far unsuccessful, attempts: a) “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b) “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers. By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen) biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel {CBP} by metabolic engineering. Complexed cellulases (i.e. cellulosomes) benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose) with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.
机译:纤维素废料生物质是“生物精炼策略”中最丰富,最具吸引力的基质,旨在通过经济和环境可持续的发酵过程生产高价值产品(例如溶剂,燃料,构件)。然而,纤维素对生物降解具有很高的抵抗性,通过生物技术策略将其转化目前需要经济上效率低下的多步工业过程。专用纤维素酶生产的需求仍然是成本有效地处理纤维素生物质的主要限制。研究工作已针对开发具有适合单步生物质发酵(合并生物处理,CBP)特性的重组微生物。迄今为止尚未成功的尝试有两种:a)“天然纤维素分解策略”,旨在赋予天然纤维素分解微生物高价值的产品特性; b)“重组纤维素分解策略”,旨在赋予表现出高产量和效价的微生物以纤维素分解能力。从描述用于植物生物量降解的天然酶系统和一些最有价值的产品(例如丁醇,乙醇和氢)生物合成的自然代谢途径入手,本综述介绍了该技术的最新瓶颈和解决方案代谢工程技术开发纤维素生物燃料{CBP}的重组微生物菌株。复杂的纤维素酶(即纤维素小体)受益于更强的邻近效应,并且相对于游离酶在不溶性底物(即结晶纤维素)上显示出增强的协同作用。因此,对涉及含纤维素/设计纤维素的重组微生物的策略给予了特别的关注。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号