首页> 外文学位 >Genome-Scale Characterization of Metabolic Interactions in a Clostridial Co-culture for Consolidated Bioprocessing.
【24h】

Genome-Scale Characterization of Metabolic Interactions in a Clostridial Co-culture for Consolidated Bioprocessing.

机译:梭菌共培养中生物相互作用的代谢相互作用的基因组规模表征。

获取原文
获取原文并翻译 | 示例

摘要

The co-culture of Clostridium acetobutylicum and Clostridium cellulolyticum can offer a potential CBP approach for producing commodity chemicals from cellulosic biomass. This thesis examines the nature of interactions between these two species in this co-culture. An expanded genome-scale metabolic model of C. acetobutylicum, which incorporates thermodynamic and metabolomic data, was presented. Flux variability analysis showed the presence of alternate carbon and electron sinks that allows for different carbon assimilation patterns and ranges of product formation rates. The genome-scale metabolic model of C. cellulolyticum was presented and validated against experimental data, and was able to predict the metabolism of C. cellulolyticum on cellulose and cellobiose. A genome-scale model of the clostridial co-culture metabolism was developed by integrating C. cellulolyticum and C. acetobutylicum metabolic models, and was used to analyze the integrated physiology of this co-culture; the simulation results showed that at high cellulose concentrations, the model is not able to capture the C. cellulolyticum growth arrest, suggesting that the removal of cellobiose inhibition by C. acetobutylicum is not the main factor that improves cellulose degradation in the co-culture. Experimental methods were developed to characterize the cellulolytic activity, the co-culture metabolism and the metabolic interactions in this co-culture. Comparative qPCR analyses and characterization of the metabolism in this clostridial co-culture along with the mono-cultures revealed that significant increase in the rate of cellulose hydrolysis can be achieved using the co-culture due to the synergy between the two clostridial species. It is likely that C. acetobutylicum improves the cellulolytic activity of C. cellulolyticum in the co-culture through exchange of metabolites, such as pyruvate, enabling it to grow and metabolize cellulose under suboptimal co-culture conditions. An in vivo metabolite analysis of C. cellulolyticum suggested a limitation on the lactate transportation pathway that leads to intracellular lactate accumulation and the growth arrest.
机译:丙酮丁醇梭菌和纤维素梭菌的共培养可提供潜在的CBP方法,用于从纤维素生物质生产商品化学品。本文研究了这种共培养中这两个物种之间相互作用的本质。提出了扩展的基因组规模的丙酮丁醇梭菌代谢模型,其中包括热力学和代谢组学数据。助焊剂变异性分析表明存在交替的碳和电子吸收体,从而允许不同的碳同化模式和产物形成速率的范围。提出了解纤梭菌的基因组规模的代谢模型,并针对实验数据进行了验证,该模型能够预测纤溶梭菌在纤维素和纤维二糖上的代谢。通过整合解纤梭菌和丙酮丁醇梭菌代谢模型,建立了梭菌共培养代谢的基因组规模模型,并用于分析这种共培养的综合生理学。模拟结果表明,在高纤维素浓度下,该模型无法捕获解纤梭菌的生长停滞,这表明丙酮丁醇梭菌去除纤维二糖的抑制作用不是促进共培养中纤维素降解的主要因素。开发了表征纤维素分解活性,共培养代谢和该共培养中的代谢相互作用的实验方法。比较的qPCR分析和这种梭菌共培养物中的代谢特征以及单培养表明,由于两种梭菌之间的协同作用,使用共培养可以显着提高纤维素水解速率。丙酮丁醇梭菌很可能通过代谢产物如丙酮酸的交换改善了共培养中解纤梭菌的纤维素分解活性,使其在次优共培养条件下能够生长和代谢纤维素。溶解梭状芽胞杆菌的体内代谢产物分析表明,在导致细胞内乳酸积累和生长停滞的乳酸运输途径上存在局限性。

著录项

  • 作者

    Salimi, Fahimeh.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号