...
首页> 外文期刊>Chemical science >The impact of O-glycan chemistry on the stability of intrinsically disordered proteins
【24h】

The impact of O-glycan chemistry on the stability of intrinsically disordered proteins

机译:O-聚糖化学性质对内在无序蛋白稳定性的影响

获取原文
           

摘要

Protein glycosylation is a diverse post-translational modification that serves myriad biological functions. O -linked glycans in particular vary widely in extent and chemistry in eukaryotes, with secreted proteins from fungi and yeast commonly exhibiting O -mannosylation in intrinsically disordered regions of proteins, likely for proteolysis protection, among other functions. However, it is not well understood why mannose is often the preferred glycan, and more generally, if the neighboring protein sequence and glycan have coevolved to protect against proteolysis in glycosylated intrinsically disordered proteins (IDPs). Here, we synthesized variants of a model IDP, specifically a natively O -mannosylated linker from a fungal enzyme, with α- O -linked mannose, glucose, and galactose moieties, along with a non-glycosylated linker. Upon exposure to thermolysin, O -mannosylation, by far, provides the highest extent of proteolysis protection. To explain this observation, extensive molecular dynamics simulations were conducted, revealing that the axial configuration of the C2-hydroxyl group (2-OH) of α-mannose adjacent to the glycan–peptide bond strongly influences the conformational features of the linker. Specifically, α-mannose restricts the torsions of the IDP main chain more than other glycans whose equatorial 2-OH groups exhibit interactions that favor perpendicular glycan–protein backbone orientation. We suggest that IDP stiffening due to O -mannosylation impairs protease action, with contributions from protein–glycan interactions, protein flexibility, and protein stability. Our results further imply that resistance to proteolysis is an important driving force for evolutionary selection of α-mannose in eukaryotic IDPs, and more broadly, that glycan motifs for proteolysis protection likely coevolve with the protein sequence to which they attach.
机译:蛋白质糖基化是多种翻译后修饰,可发挥多种生物学功能。 O-连接的聚糖尤其在真核生物中在程度和化学上有很大的不同,真菌和酵母中分泌的蛋白质通常在蛋白质的内在无序区域表现出O-甘露糖基化,可能具有蛋白水解保护等功能。但是,人们尚不清楚为什么甘露糖通常是优选的聚糖,更普遍的是,如果相邻的蛋白质序列和聚糖共同进化以防止糖基化内在无序蛋白(IDP)中的蛋白水解。在这里,我们合成了模型IDP的变体,特别是来自真菌酶的天然O-甘露糖基化连接体,以及α-O-连接的甘露糖,葡萄糖和半乳糖部分,以及非糖基化连接体。迄今为止,在暴露于嗜热菌蛋白酶后,O-甘露糖基化提供了最大程度的蛋白水解保护。为了解释这一发现,进行了广泛的分子动力学模拟,揭示了与聚糖-肽键相邻的α-甘露糖的C2-羟基(2-OH)的轴向构型强烈影响接头的构象特征。特别是,α-甘露糖对赤道2-OH基团表现出有利于垂直聚糖-蛋白骨架方向的相互作用的其他聚糖而言,对IDP主链的扭转作用更大。我们认为,由于O-甘露糖基化而引起的IDP硬化会削弱蛋白酶的作用,这是由蛋白质-聚糖相互作用,蛋白质柔韧性和蛋白质稳定性引起的。我们的结果进一步暗示,对蛋白水解的抵抗力是真核IDP中进化选择α-甘露糖的重要驱动力,更广泛地讲,用于蛋白水解保护的聚糖基序可能会与它们所附着的蛋白质序列一起进化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号