...
首页> 外文期刊>Biogeosciences Discussions >Reciprocal bias compensation and ensuing uncertainties in model-based climate projections: pelagic biogeochemistry versus ocean mixing
【24h】

Reciprocal bias compensation and ensuing uncertainties in model-based climate projections: pelagic biogeochemistry versus ocean mixing

机译:基于模型的气候预测中的相互偏差补偿和随之而来的不确定性:远洋生物地球化学与海洋混合

获取原文
           

摘要

Anthropogenic emissions of greenhouse gases such as COsub2/sub and Nsub2/subO impinge on the Earth system, which in turn modulates atmospheric greenhouse gas concentrations. The underlying feedback mechanisms are complex and, at times, counterintuitive. So-called Earth system models have recently matured to standard tools tailored to assess these feedback mechanisms in a warming world. Applications for these models range from being targeted at basic process understanding to the assessment of geo-engineering options. A problem endemic to all these applications is the need to estimate poorly known model parameters, specifically for the biogeochemical component, based on observational data (e.g., nutrient fields). In the present study, we illustrate with an Earth system model that through such an approach biases and other model deficiencies in the physical ocean circulation model component can reciprocally compensate for biases in the pelagic biogeochemical model component (and vice versa). We present two model configurations that share a remarkably similar steady state (based on ad hoc measures) when driven by historical boundary conditions, even though they feature substantially different configurations (parameter sets) of ocean mixing and biogeochemical cycling. When projected into the future the similarity between the model responses breaks. Metrics such as changes in total oceanic carbon content and suboxic volume diverge between the model configurations as the Earth warms. Our results reiterate that advancing the understanding of oceanic mixing processes will reduce the uncertainty of future projections of oceanic biogeochemical cycles. Related to the latter, we suggest that an advanced understanding of oceanic biogeochemical cycles can be used for advancements in ocean circulation modules.
机译:人为排放的温室气体(例如CO 2 和N 2 O)撞击地球系统,进而调节大气中温室气体的浓度。潜在的反馈机制非常复杂,有时甚至违反直觉。所谓的地球系统模型最近已经成熟,成为了专门用来评估变暖世界中这些反馈机制的标准工具。这些模型的应用范围从针对基本过程的理解到评估地球工程选项。所有这些应用中普遍存在的问题是需要基于观测数据(例如营养物田地)评估鲜为人知的模型参数,特别是针对生物地球化学成分的模型参数。在本研究中,我们通过一个地球系统模型来说明,通过这种方法,物理海洋环流模型分量中的偏差和其他模型缺陷可以相互补偿中上层生物地球化学模型分量中的偏差(反之亦然)。我们介绍了两个模型配置,这些模型配置在历史边界条件的驱动下共享非常相似的稳态(基于临时措施),即使它们在海洋混合和生物地球化学循环方面具有显着不同的配置(参数集)。当预测到未来时,模型响应之间的相似性将中断。随着地球变暖,模型配置之间的度量指标(例如总海洋碳含量变化和低氧体积)会有所不同。我们的结果重申,增进对海洋混合过程的了解将减少海洋生物地球化学循环未来预测的不确定性。与后者相关,我们建议对海洋生物地球化学循环的高级理解可以用于海洋环流模块的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号