首页> 外文期刊>BMC proceedings. >Modeling methylation data as an additional genetic variance component
【24h】

Modeling methylation data as an additional genetic variance component

机译:将甲基化数据建模为附加的遗传变异成分

获取原文
           

摘要

High-throughput platforms allow the characterization of thousands of previously known methylation sites. These platforms have great potential for investigating the epigenetic effects that are partially responsible for gene expression control. Methylation sites provide a bridge for the investigation of real-time environmental contributions on genomic events by the alteration of methylation status of those sites. Using the data provided by GAW20’s organization committee, we calculated the heritability estimates of each cytosine-phosphate-guanine (CpG) island before and after the use of fenofibrate, a lipid-control drug. Surprisingly, we detected substantially high heritability estimates before drug usage. This somewhat unexpected high sample correlation was corrected by the use of principal components and the distributions of heritability estimates before and after fenofibrate treatment, which made the distributions comparable. The methylation sites located near a gene were collected and a genetic relationship matrix estimated to represent the overall correlation between samples. We implemented a random-effect association test to screen genes whose methylation patterns partially explain the observable high-density lipoprotein (HDL) heritability. Our leading association was observed for the TMEM52 gene that encodes a transmembrane protein, and is largely expressed in the liver, had not been previously associated with HDL until this manuscript. Using a variance component decomposition framework with the linear mixed model allows the integration of data from different sources, such as methylation, gene expression, metabolomics, and proteomics. The decomposition of the genetic variance component decomposition provides a flexible analytical approach for the challenges of this new omics era.
机译:高通量平台可表征数千个先前已知的甲基化位点。这些平台在研究部分负责基因表达控制的表观遗传效应方面具有巨大潜力。甲基化位点通过改变这些位点的甲基化状态,为研究基因组事件的实时环境贡献提供了桥梁。根据GAW20组织委员会提供的数据,我们计算了在使用脂质控制药物非诺贝特前后,每个胞嘧啶-磷酸-鸟嘌呤(CpG)岛的遗传力估计值。令人惊讶的是,我们在吸毒之前检测到了很高的遗传力估计值。非诺贝特治疗前后通过使用主成分和遗传力估计值分布校正了这种出乎意料的高样本相关性,这使分布具有可比性。收集位于基因附近的甲基化位点,并估计遗传关系矩阵以代表样品之间的整体相关性。我们实施了一项随机效应关联测试,以筛选其甲基化模式部分解释了可观察到的高密度脂蛋白(HDL)遗传力的基因。在编码该跨膜蛋白的TMEM52基因中观察到我们的主要关联,该基因在肝脏中大量表达,直到该手稿之前才与HDL相关。通过线性混合模型使用方差成分分解框架,可以集成来自不同来源的数据,例如甲基化,基因表达,代谢组学和蛋白质组学。遗传方差分量分解的分解为这种新的组学时代的挑战提供了灵活的分析方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号