首页> 外文期刊>BMC Medical Research Methodology >Combining directed acyclic graphs and the change-in-estimate procedure as a novel approach to adjustment-variable selection in epidemiology
【24h】

Combining directed acyclic graphs and the change-in-estimate procedure as a novel approach to adjustment-variable selection in epidemiology

机译:结合有向无环图和估计变化程序,作为流行病学中调整变量选择的一种新方法

获取原文

摘要

Background Directed acyclic graphs (DAGs) are an effective means of presenting expert-knowledge assumptions when selecting adjustment variables in epidemiology, whereas the change-in-estimate procedure is a common statistics-based approach. As DAGs imply specific empirical relationships which can be explored by the change-in-estimate procedure, it should be possible to combine the two approaches. This paper proposes such an approach which aims to produce well-adjusted estimates for a given research question, based on plausible DAGs consistent with the data at hand, combining prior knowledge and standard regression methods. Methods Based on the relationships laid out in a DAG, researchers can predict how a collapsible estimator (e.g. risk ratio or risk difference) for an effect of interest should change when adjusted on different variable sets. Implied and observed patterns can then be compared to detect inconsistencies and so guide adjustment-variable selection. Results The proposed approach involves i. drawing up a set of plausible background-knowledge DAGs; ii. starting with one of these DAGs as a working DAG, identifying a minimal variable set, S, sufficient to control for bias on the effect of interest; iii. estimating a collapsible estimator adjusted on S, then adjusted on S plus each variable not in S in turn (“add-one pattern”) and then adjusted on the variables in S minus each of these variables in turn (“minus-one pattern”); iv. checking the observed add-one and minus-one patterns against the pattern implied by the working DAG and the other prior DAGs; v. reviewing the DAGs, if needed; and vi. presenting the initial and all final DAGs with estimates. Conclusion This approach to adjustment-variable selection combines background-knowledge and statistics-based approaches using methods already common in epidemiology and communicates assumptions and uncertainties in a standardized graphical format. It is probably best suited to areas where there is considerable background knowledge about plausible variable relationships. Researchers may use this approach as an additional tool for selecting adjustment variables when analyzing epidemiological data.
机译:背景技术有向无环图(DAG)是在流行病学中选择调整变量时提出专家知识假设的有效方法,而估计变化过程是基于统计的常见方法。由于DAG暗示可以通过估计变化程序探索的特定经验关系,因此应该可以将两种方法结合起来。本文提出了一种方法,该方法旨在根据与现有数据相符的合理DAG,结合先验知识和标准回归方法,为给定的研究问题提供经过适当调整的估计。方法根据DAG中列出的关系,研究人员可以预测在对不同变量集进行调整后,对于感兴趣效应的可折叠估计器(例如风险比或风险差异)应如何变化。然后可以比较隐含模式和观察到的模式,以检测不一致之处,从而指导调整变量的选择。结果拟议的方法涉及:拟定一套合理的背景知识DAG; ii。从这些DAG中的一个作为工作DAG开始,确定足以控制对目标效果产生偏见的最小变量集S; iii。估计在S上调整后的可折叠估计量,然后在S上再加上不在S中的每个变量进行调整(“加一模式”),然后在S中的变量上依次减去这些变量中的每一个(“减一模式”)进行调整); iv。根据工作DAG和其他先前DAG暗示的模式检查观察到的加一和减一模式; v。如有必要,审查DAG;和vi。提供初始和所有最终DAG的估算值。结论这种调整变量选择的方法结合了背景知识和基于统计学的方法,并使用了流行病学中常见的方法,并以标准化的图形格式传达了假设和不确定性。它可能最适合于对合理的变量关系有大量背景知识的领域。研究人员可以在分析流行病学数据时将此方法用作选择调整变量的附加工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号