首页> 外文期刊>BioMedical Engineering OnLine >Vision-aided brain–machine interface training system for robotic arm control and clinical application on two patients with cervical spinal cord injury
【24h】

Vision-aided brain–machine interface training system for robotic arm control and clinical application on two patients with cervical spinal cord injury

机译:视觉辅助脑机接口训练系统,用于机器人手臂控制和在两名颈脊髓损伤患者中的临床应用

获取原文
           

摘要

While spontaneous robotic arm control using motor imagery has been reported, most previous successful cases have used invasive approaches with advantages in spatial resolution. However, still many researchers continue to investigate methods for robotic arm control with noninvasive neural signal. Most of noninvasive control of robotic arm utilizes P300, steady state visually evoked potential, N2pc, and mental tasks differentiation. Even though these approaches demonstrated successful accuracy, they are limited in time efficiency and user intuition, and mostly require visual stimulation. Ultimately, velocity vector construction using electroencephalography activated by motion-related motor imagery can be considered as a substitution. In this study, a vision-aided brain–machine interface training system for robotic arm control is proposed and developed. The proposed system uses a Microsoft Kinect to detect and estimates the 3D positions of the possible target objects. The predicted velocity vector for robot arm input is compensated using the artificial potential to follow an intended one among the possible targets. Two participants with cervical spinal cord injury trained with the system to explore its possible effects. In a situation with four possible targets, the proposed system significantly improved the distance error to the intended target compared to the unintended ones (p??0.0001). Functional magnetic resonance imaging after five sessions of observation-based training with the developed system showed brain activation patterns with tendency of focusing to ipsilateral primary motor and sensory cortex, posterior parietal cortex, and contralateral cerebellum. However, shared control with blending parameter α less than 1 was not successful and success rate for touching an instructed target was less than the chance level (=?50%). The pilot clinical study utilizing the training system suggested potential beneficial effects in characterizing the brain activation patterns.
机译:虽然已经报道了使用运动图像自发进行机械臂控制的方法,但大多数以前成功的案例都使用了具有空间分辨率优势的侵入性方法。但是,仍然有许多研究者继续研究无创神经信号进行机械臂控制的方法。机器人手臂的大多数非侵入式控制都利用P300,稳态视觉诱发电位,N2pc和智力任务分化。尽管这些方法显示出成功的准确性,但是它们在时间效率和用户直觉上受到限制,并且大多数需要视觉刺激。最终,可以将使用由与运动有关的运动图像激活的脑电图的速度矢量构造视为替代。在这项研究中,提出并开发了用于机器人手臂控制的视觉辅助脑机接口训练系统。提议的系统使用Microsoft Kinect来检测和估计可能的目标对象的3D位置。使用人工势能补偿机器人手臂输入的预测速度矢量,以跟随可能的目标中的预期目标。两名患有颈脊髓损伤的参与者对该系统进行了培训,以探讨其可能的作用。在具有四个可能目标的情况下,与非预期目标相比,拟议的系统显着改善了距目标目标的距离误差(p≤<0.0001)。经过五次基于发达系统的基于观察的训练后,功能磁共振成像显示出大脑激活模式,倾向于集中于同侧主要运动和感觉皮层,顶叶后皮质和对侧小脑。但是,混合参数α小于1的共享控制不成功,并且触摸指示目标的成功率小于机会水平(=?50%)。利用训练系统进行的临床试验研究表明,在表征大脑激活模式方面具有潜在的有益作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号