首页> 外文期刊>BioData Mining >Grid-based stochastic search for hierarchical gene-gene interactions in population-based genetic studies of common human diseases
【24h】

Grid-based stochastic search for hierarchical gene-gene interactions in population-based genetic studies of common human diseases

机译:基于网格的随机搜索,用于基于种群的常见人类疾病遗传研究中的分层基因-基因相互作用

获取原文
获取外文期刊封面目录资料

摘要

Background Large-scale genetic studies of common human diseases have focused almost exclusively on the independent main effects of single-nucleotide polymorphisms (SNPs) on disease susceptibility. These studies have had some success, but much of the genetic architecture of common disease remains unexplained. Attention is now turning to detecting SNPs that impact disease susceptibility in the context of other genetic factors and environmental exposures. These context-dependent genetic effects can manifest themselves as non-additive interactions, which are more challenging to model using parametric statistical approaches. The dimensionality that results from a multitude of genotype combinations, which results from considering many SNPs simultaneously, renders these approaches underpowered. We previously developed the multifactor dimensionality reduction (MDR) approach as a nonparametric and genetic model-free machine learning alternative. Approaches such as MDR can improve the power to detect gene-gene interactions but are limited in their ability to exhaustively consider SNP combinations in genome-wide association studies (GWAS), due to the combinatorial explosion of the search space. We introduce here a stochastic search algorithm called Crush for the application of MDR to modeling high-order gene-gene interactions in genome-wide data. The Crush-MDR approach uses expert knowledge to guide probabilistic searches within a framework that capitalizes on the use of biological knowledge to filter gene sets prior to analysis. Here we evaluated the ability of Crush-MDR to detect hierarchical sets of interacting SNPs using a biology-based simulation strategy that assumes non-additive interactions within genes and additivity in genetic effects between sets of genes within a biochemical pathway. Results We show that Crush-MDR is able to identify genetic effects at the gene or pathway level significantly better than a baseline random search with the same number of model evaluations. We then applied the same methodology to a GWAS for Alzheimer’s disease and showed base level validation that Crush-MDR was able to identify a set of interacting genes with biological ties to Alzheimer’s disease. Conclusions We discuss the role of stochastic search and cloud computing for detecting complex genetic effects in genome-wide data.
机译:背景技术关于人类常见疾病的大规模遗传研究几乎都集中在单核苷酸多态性(SNP)对疾病易感性的独立主要作用上。这些研究已经取得了一些成功,但是常见疾病的许多遗传结构仍然无法解释。现在,注意力转向检测在其他遗传因素和环境暴露的情况下会影响疾病易感性的SNP。这些依赖于上下文的遗传效应可以表现为非加性相互作用,这对于使用参数统计方法进行建模更具挑战性。由于同时考虑多个SNP而导致的多种基因型组合所产生的维数,使得这些方法的功能不足。我们先前开发了多因素降维(MDR)方法,将其作为一种非参数且无遗传模型的机器学习替代方法。诸如MDR之类的方法可以提高检测基因与基因相互作用的能力,但由于搜索空间的组合爆炸性发展,因此无法在全基因组关联研究(GWAS)中全面考虑SNP组合的能力。我们在这里介绍一种称为Crush的随机搜索算法,该算法用于MDR在全基因组数据中建模高阶基因与基因相互作用的过程中。 Crush-MDR方法使用专家知识来指导框架内的概率搜索,该框架利用生物学知识的使用在分析之前过滤基因集。在这里,我们评估了Crush-MDR使用基于生物学的模拟策略检测相互作用SNP的层次集的能力,该策略假定基因内的非累加相互作用以及生化途径中各组基因之间遗传效应的可加性。结果我们显示,与相同数量的模型评估相比,Crush-MDR能够更好地识别基因或途径水平的遗传效应。然后,我们将相同的方法应用于GWAS来治疗阿尔茨海默氏病,并证明了Crush-MDR能够鉴定出一组与阿尔茨海默氏病具有生物学联系的相互作用基因的基础水平验证。结论我们讨论了随机搜索和云计算在检测全基因组数据中复杂遗传效应中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号