...
首页> 外文期刊>Biotechnology for Biofuels >Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast
【24h】

Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast

机译:卡尔文循环酶固定二氧化碳可提高酵母中的乙醇产量

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of CO2 as electron acceptor for NADH oxidation in heterotrophic microorganisms would increase product yields in industrial biotechnology. Results A hitherto unexplored strategy to address this redox challenge is the functional expression in yeast of enzymes from autotrophs, thereby enabling the use of CO2 as electron acceptor for NADH reoxidation. Functional expression of the Calvin cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in Saccharomyces cerevisiae led to a 90% reduction of the by-product glycerol and a 10% increase in ethanol production in sugar-limited chemostat cultures on a mixture of glucose and galactose. Co-expression of the Escherichia coli chaperones GroEL and GroES was key to successful expression of CbbM, a form-II Rubisco from the chemolithoautotrophic bacterium Thiobacillus denitrificans in yeast. Conclusions Our results demonstrate functional expression of Rubisco in a heterotrophic eukaryote and demonstrate how incorporation of CO2 as a co-substrate in metabolic engineering of heterotrophic industrial microorganisms can be used to improve product yields. Rapid advances in molecular biology should allow for rapid insertion of this 4-gene expression cassette in industrial yeast strains to improve production, not only of 1st and 2nd generation ethanol production, but also of other renewable fuels or chemicals.
机译:背景技术氧化还原-辅因子平衡限制了厌氧发酵过程中的产物产量。通过在基于酵母的生物乙醇生产中甘油作为主要副产物的形成来举例说明这一挑战,这是需要重新氧化过量的NADH并导致转化效率损失的直接结果。在异养微生物中将CO2用作NADH氧化的电子受体将增加工业生物技术中的产品产量。结果迄今为止,尚未解决的解决该氧化还原挑战的策略是酵母自养生物中酶的功能性表达,从而使CO2可以用作NADH重氧化的电子受体。在酿酒酵母中,卡尔文循环酶磷酸激酶(PRK)和核糖-1,5-双磷酸羧化酶(Rubisco)的功能性表达导致副产物甘油减少了90%,乙醇产量增加了10%。在葡萄糖和半乳糖的混合物上进行恒化培养。大肠杆菌伴侣GroEL和GroES的共表达是在酵母中成功表达CbbM的关键,CbbM是一种来自化学自养型细菌反硝化硫杆菌的II型Rubisco。结论我们的结果证明了Rubisco在异养真核生物中的功能性表达,并证明了如何将CO2作为共底物掺入异养工业微生物的代谢工程中可用于提高产品产量。分子生物学的飞速发展应该允许这种4基因表达盒在工业酵母菌株中快速插入,从而不仅提高第一代和第二代乙醇的产量,而且提高其他可再生燃料或化学品的产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号