首页> 外文期刊>Biotechnology for Biofuels >Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
【24h】

Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production

机译:在工业酿酒酵母中结合抑制剂耐受性和D-木糖发酵以高效生产基于木质纤维素的生物乙醇

获取原文
           

摘要

Background In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient inhibitor tolerance for efficient sugar fermentation in lignocellulose hydrolysates. The aim of the present work was to combine high xylose fermentation activity and high inhibitor tolerance in a single industrial yeast strain. Results We have screened 580 yeast strains for high inhibitor tolerance using undetoxified acid-pretreated spruce hydrolysate and identified a triploid industrial baker’s yeast strain as having the highest inhibitor tolerance. From this strain, a mating competent diploid segregant with even higher inhibitor tolerance was obtained. It was crossed with the recently developed D-xylose fermenting diploid industrial strain GS1.11-26, with the Ethanol Red genetic background. Screening of 819 diploid segregants from the tetraploid hybrid resulted in two strains, GSF335 and GSF767, combining high inhibitor tolerance and efficient xylose fermentation. In a parallel approach, meiotic recombination of GS1.11-26 with a haploid segregant of Ethanol Red and screening of 104 segregants resulted in a similar inhibitor tolerant diploid strain, GSE16. The three superior strains exhibited significantly improved tolerance to inhibitors in spruce hydrolysate, higher glucose consumption rates, higher aerobic growth rates and higher maximal ethanol accumulation capacity in very-high gravity fermentation, compared to GS1.11-26. In complex medium, the D-xylose utilization rate by the three superior strains ranged from 0.36 to 0.67 g/g DW/h, which was lower than that of GS1.11-26 (1.10 g/g DW/h). On the other hand, in batch fermentation of undetoxified acid-pretreated spruce hydrolysate, the three superior strains showed comparable D-xylose utilization rates as GS1.11-26, probably because of their higher inhibitor tolerance. They produced up to 23% more ethanol compared to Ethanol Red. Conclusions We have successfully constructed three superior industrial S. cerevisiae strains that combine efficient D-xylose utilization with high inhibitor tolerance. Since the background strain Ethanol Red has a proven record of successful industrial application, the three new superior strains have strong potential for direct application in industrial bioethanol production.
机译:背景技术除了有效利用戊糖外,高耐受性耐受性是任何用于利用木质纤维素生物质进行经济可行的工业生物乙醇生产的生物都需要的关键特征。尽管最近的工作已经成功地在健壮的工业酿酒酵母菌株中建立了有效的木糖发酵,但是所得的菌株仍然缺乏足够的抑制剂耐受性,无法在木质纤维素水解物中进行有效的糖发酵。本发明的目的是在单个工业酵母菌株中结合高木糖发酵活性和高抑制剂耐受性。结果我们使用未经过氧化脱氧的酸预处理的云杉水解物筛选了580株具有高抑制剂耐受性的酵母菌株,并确定了三倍体工业面包酵母的菌株具有最高的抑制剂耐受性。从该菌株中获得了具有更高抑制剂耐受性的交配感受态二倍体分离剂。它与最近开发的具有乙醇红遗传背景的D-木糖发酵二倍体工业菌株GS1.11-26杂交。从四倍体杂种中筛选819个二倍体分离物产生了两个菌株,GSF335和GSF767,结合了高抑制剂耐受性和有效的木糖发酵能力。在平行方法中,GS1.11-26与乙醇红的单倍体隔离物进行减数分裂重组并筛选104个隔离物,产生了相似的抑制剂耐受性二倍体菌株GSE16。与GS1.11-26相比,这三种优良菌株在云杉水解产物中对抑制剂的耐受性显着提高,在超高重力发酵中,葡萄糖消耗率更高,有氧代谢速率更高,最大乙醇积累能力更高。在复杂培养基中,三种优良菌株的D-木糖利用率为0.36至0.67 g / g DW / h,低于GS1.11-26(1.10 g / g DW / h)。另一方面,在未经过氧化处理的酸预处理的云杉水解产物的分批发酵中,这三个优良菌株显示出与GS1.11-26相当的D-木糖利用率,这可能是因为它们具有更高的抑制剂耐受性。与乙醇红相比,它们产生的乙醇最多增加23%。结论我们已经成功构建了三种优良的工业酿酒酵母菌株,它们结合了有效的D-木糖利用率和高的抑制剂耐受性。由于本底菌株乙醇红具有成功的工业应用记录,因此,这三种新的优良菌株具有直接应用于工业生物乙醇生产的强大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号