首页> 外文期刊>Designs, Codes and Cryptography >On the k-error linear complexity of sequences with period 2pn over GF(q)
【24h】

On the k-error linear complexity of sequences with period 2pn over GF(q)

机译:GF(q)上周期为2p n 的序列的k误差线性复杂度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we first optimize the structure of the Wei–Xiao–Chen algorithm for the linear complexity of sequences over GF(q) with period N = 2p n , where p and q are odd primes, and q is a primitive root modulo p 2. The second, an union cost is proposed, so that an efficient algorithm for computing the k-error linear complexity of a sequence with period 2p n over GF(q) is derived, where p and q are odd primes, and q is a primitive root modulo p 2. The third, we give a validity of the proposed algorithm, and also prove that there exists an error sequence e N , where the Hamming weight of e N is not greater than k, such that the linear complexity of (s + e) N reaches the k-error linear complexity c. We also present a numerical example to illustrate the algorithm. Finally, we present the minimum value k for which the k-error linear complexity is strictly less than the linear complexity.
机译:在本文中,我们首先针对周期N = 2p n 的GF(q)上的序列的线性复杂度,首先优化了Wei-Xiao-Chen算法的结构,其中p和q是奇质数, q是原始的根模p 2 。其次,提出了联合成本,从而推导了一种有效的算法,用于计算在GF(q)上周期为2p n 的序列的k误差线性复杂度,其中p和q为奇数质数,q是原始根模p 2 。第三,我们给出了所提算法的有效性,并证明了存在一个错误序列e N ,其中e N 的汉明权重不大于k ,使得(s + e) N 的线性复杂度达到k误差线性复杂度c。我们还提供了一个数值示例来说明该算法。最后,我们给出了k误差线性复杂度严格小于线性复杂度的最小值k。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号