首页> 外文期刊>Decision support systems >A noise correction-based approach to support a recommender system in a highly sparse rating environment
【24h】

A noise correction-based approach to support a recommender system in a highly sparse rating environment

机译:基于噪声校正的方法在高度稀疏的评级环境中支持推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems support consumers in decision-making for selecting desired products or services from an overloaded search space. However, this decision support system faces difficulties while dealing with sparse and noisy rating data. Therefore, this research re-classifies users and items of a system into three classes, namely strong, average and weak to identify and correct noise ratings. Later, the Bhattacharya coefficient, a well-performing similarity measure for a sparse dataset, is integrated with the proposed re-classification method to predict unrated items from the obtained noise-free sparse dataset and recommend preferred products to consumers. Furthermore, the effectiveness of the proposed model is validated on two sparse and noisy datasets and compared with various published methods in terms of the mean absolute error (MAE), root mean square error (RMSE), F1-measure, precision, and recall values. The obtained results confirm that the proposed model performs better than other published relevant methods.
机译:推荐系统支持消费者进行决策,以便从超载的搜索空间中选择所需的产品或服务。但是,该决策支持系统在处理稀疏和嘈杂的评级数据时面临困难。因此,本研究将系统的用户和项目重新分为三类,即识别和纠正噪声等级的强,平均和弱。随后,将Bhattacharya系数(一种稀疏数据集的良好相似性度量)与建议的重新分类方法集成在一起,以从获得的无噪声稀疏数据集中预测未评级的商品,并将推荐产品推荐给消费者。此外,在两个稀疏和嘈杂的数据集上验证了所提出模型的有效性,并在平均绝对误差(MAE),均方根误差(RMSE),F1度量,精度和召回值方面与各种已发布的方法进行了比较。 。获得的结果证实了所提出的模型的性能优于其他已发布的相关方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号