首页> 外文期刊>Decision support systems >The Iterated Prisoner's Dilemma: early experiences with Learning Classifier System - based simple agents
【24h】

The Iterated Prisoner's Dilemma: early experiences with Learning Classifier System - based simple agents

机译:迭代囚徒困境:基于学习分类器系统的简单代理的早期经验

获取原文
获取原文并翻译 | 示例

摘要

Prior research on artificial agents/agencies involves entities using specifically tailored operational strategies (e. g., for information retrieval, purchase negotiation). In some situations, however, an agent must interact with others whose strategies are initially unknown and whose interests may counter its own. In such circumstances, pre - defining effective counter - strate - gies could become difficult or impractical. One solution, which may be viable in certain contexts, is to create agents that self - evolve increasingly effective strategies from rudimentary beginnings, during actual deployment.
机译:对人工代理/代理人的先前研究涉及实体使用专门定制的操作策略(例如,用于信息检索,购买协商)。但是,在某些情况下,代理必须与其他策略进行交互,而这些策略最初是未知的,并且其利益可能会与其自身背道而驰。在这种情况下,预先定义有效的对策可能会变得困难或不切实际。一种解决方案(可能在某些情况下可行)是创建在实际部署过程中从基本开始就自我发展日益有效的策略的代理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号