首页> 外文期刊>Decision support systems >Integration of ART2 neural network and genetic K-means algorithm for analyzing Web browsing paths in electronic commerce
【24h】

Integration of ART2 neural network and genetic K-means algorithm for analyzing Web browsing paths in electronic commerce

机译:集成ART2神经网络和遗传K均值算法以分析电子商务中的Web浏览路径

获取原文
获取原文并翻译 | 示例

摘要

Neural networks and genetic algorithms are useful for clustering analysis in data mining. Artificial neural networks (ANNs) and genetic algorithms (GAs) have been applied in many areas with very promising results. Thus, this study uses adaptive resonance theory 2 (ART2) neural network to determine an initial solution, and then applies genetic K-means algorithm (GKA) to find the final solution for analyzing Web browsing paths in electronic commerce (EC). The proposed method is compared with ART2 followed by K-means. In order to verify the proposed method, data from a Monte Carlo Simulation are used. The simulation results show that the ART2 + GKA is significantly better than the ART2 + K-means, both for mean within cluster variations and misclassification rate. A real-world problem, a recommendation agent system for a Web PDA company, is investigated. In this system, the browsing paths are used for clustering in order to analyze the browsing preferences of customers. These results also show that, based on the mean within-cluster variations, ART2 + GKA is much more effective.
机译:神经网络和遗传算法可用于数据挖掘中的聚类分析。人工神经网络(ANN)和遗传算法(GA)已在许多领域得到了广泛应用,并取得了令人鼓舞的成果。因此,本研究使用自适应共振理论2(ART2)神经网络来确定初始解决方案,然后应用遗传K均值算法(GKA)来找到分析电子商务(EC)中Web浏览路径的最终解决方案。将该方法与ART2和K-means进行比较。为了验证所提出的方法,使用了来自蒙特卡洛模拟的数据。仿真结果表明,ART2 + GKA的均值显着优于ART2 + K-means,无论是簇内均值还是误分类率。研究了一个实际问题,即Web PDA公司的推荐代理系统。在该系统中,浏览路径用于聚类,以便分析客户的浏览偏好。这些结果还表明,基于平均集群内差异,ART2 + GKA更为有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号