首页> 外文期刊>Decision support systems >Combining social network and semantic concept analysis for personalized academic researcher recommendation
【24h】

Combining social network and semantic concept analysis for personalized academic researcher recommendation

机译:结合社交网络和语义概念分析以个性化学术研究人员推荐

获取原文
获取原文并翻译 | 示例

摘要

The rapid proliferation of information technologies especially Web 2.0 techniques has changed the fundamental ways how things can be done in many areas, including how researchers could communicate and collaborate with each other. The presence of the sheer volume of researchers and research information on the Web has led to the problem of information overload. There is a pressing need to develop researcher recommendation agents such that users can be provided with personalized recommendations of the researchers they can potentially collaborate with for mutual research benefits. In academic contexts, recommending suitable research partners to researchers can facilitate knowledge discovery and exchange, and ultimately improve the research productivity of researchers. Existing expertise recommendation research usually investigates the expert recommending problem from two independent dimensions, namely, their social relations and expertise information. The main contribution of this paper is that we propose a network based researcher recommendation approach which combines social network analysis and semantic concept analysis in a unified framework to improve the effectiveness of personalized researcher recommendation. The results of our experiment show that the proposed approach significantly outperforms the other baseline methods. Moreover, how our proposed framework can be applied to the real-world academic contexts is explained based on a case study.
机译:信息技术(尤其是Web 2.0技术)的迅速发展已经改变了许多领域中完成工作的基本方式,包括研究人员之间如何进行沟通和协作。 Web上大量的研究人员和研究信息的存在导致了信息过载的问题。迫切需要开发研究人员推荐代理,以便向用户提供他们可能与之合作以获得共同研究利益的研究人员的个性化推荐。在学术背景下,向研究人员推荐合适的研究伙伴可以促进知识的发现和交流,并最终提高研究人员的研究效率。现有专业知识推荐研究通常从两个独立的维度(即他们的社会关系和专业知识信息)研究专家推荐问题。本文的主要贡献在于,我们提出了一种基于网络的研究人员推荐方法,该方法将社交网络分析和语义概念分析结合在一个统一的框架中,以提高个性化研究人员推荐的有效性。我们的实验结果表明,所提出的方法明显优于其他基准方法。此外,基于案例研究,说明了我们提出的框架如何应用于现实世界的学术环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号