首页> 外文期刊>Decision support systems >An experimental comparison of real and artificial deception using a deception generation model
【24h】

An experimental comparison of real and artificial deception using a deception generation model

机译:使用欺骗生成模型对真实和人工欺骗进行的实验比较

获取原文
获取原文并翻译 | 示例

摘要

To develop a data mining approach for a deception application, data collection costs can be prohibitive because both deceptive data and truthful data are necessary to be collected. To reduce data collection costs, artificially generated deception data can be used, but the impact of using artificially generated deception data is not well understood. To study the relationship between artificial and real deception, this paper presents an experimental comparison using a novel deception generation model. The deception and truth data were collected from financial aid applications, a document centric area with limited resources for verification. The data collection provided a unique data set containing truth, natural deception, and boosted deception. To simulate deception, the Application Deception Model was developed to generate artificial deception in different deception scenarios. To study differences between artificial and real deception, an experiment was performed using deception level and data generation method as factors and directed distance and outlier score as outcome variables. Our results provided evidence of a reasonable similarity between artificial and real deception, suggesting the possibility of using artificially generated deception to reduce the costs associated with obtaining training data.
机译:要开发用于欺骗应用程序的数据挖掘方法,数据收集成本可能会过高,因为必须同时收集欺骗性数据和真实数据。为了减少数据收集成本,可以使用人工生成的欺骗数据,但是使用人工生成的欺骗数据的影响尚不清楚。为了研究人工欺骗与真实欺骗之间的关系,本文提出了使用新型欺骗生成模型的实验比较。欺骗和真相数据是从财务援助应用程序收集的,这是一个以文档为中心的区域,验证资源有限。数据收集提供了一个包含真实性,自然欺骗性和增强欺骗性的独特数据集。为了模拟欺骗,开发了应用欺骗模型以在不同欺骗场景中生成人工欺骗。为了研究人工欺骗与真实欺骗之间的差异,使用欺骗级别和数据生成方法作为因子,以定向距离和离群值作为结果变量进行了实验。我们的结果提供了人工欺骗与真实欺骗之间合理相似性的证据,表明使用人工生成的欺骗来减少与获取训练数据相关的成本的可能性。

著录项

  • 来源
    《Decision support systems》 |2012年第3期|p.543-553|共11页
  • 作者单位

    Automapath Inc., Santa Clara, CA 95050, United States;

    The Business School, University of Colorado Denver, United States,Campus Box 165, P.O. Box 173364, University of Colorado Denver, Denver, CO 80217-3364, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    deception; deception detection; noise model; data generation model;

    机译:欺骗欺骗检测;噪声模型数据生成模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号