首页> 外文期刊>Data & Knowledge Engineering >Group-based privacy preservation techniques for process mining
【24h】

Group-based privacy preservation techniques for process mining

机译:基于组的流程挖掘的隐私保存技术

获取原文
获取原文并翻译 | 示例

摘要

Process mining techniques help to improve processes using event data. Such data are widely available in information systems. However, they often contain highly sensitive information. For example, healthcare information systems record event data that can be utilized by process mining techniques to improve the treatment process, reduce patient's waiting times, improve resource productivity, etc. However, the recorded event data include highly sensitive information related to treatment activities. Responsible process mining should provide insights about the underlying processes, yet, at the same time, it should not reveal sensitive information. In this paper, we discuss the challenges regarding directly applying existing well-known group based privacy preservation techniques, e.g., k-anonymity, l-diversity, etc, to event data. We provide formal definitions of attack models and introduce an effective group-based privacy preservation technique for process mining. Our technique covers the main perspectives of process mining including control-flow, time, case, and organizational perspectives. The proposed technique provides interpretable and adjustable parameters to handle different privacy aspects. We employ real-life event data and evaluate both data utility and result utility to show the effectiveness of the privacy preservation technique. We also compare this approach with other group-based approaches for privacy-preserving event data publishing.
机译:过程挖掘技术有助于使用事件数据改进流程。这些数据在信息系统中广泛使用。但是,它们通常包含高度敏感的信息。例如,医疗保健信息系统记录可以通过处理挖掘技术来利用的事件数据来改善治疗过程,降低患者的等待时间,提高资源生产力等。然而,记录的事件数据包括与治疗活动有关的高敏感信息。负责的流程挖掘应提供关于底层流程的见解,但同时,它不应该揭示敏感信息。在本文中,我们讨论了关于直接应用基于众所周知的基于群体的隐私保存技术,例如k-匿名,l-多样性等到事件数据的挑战。我们提供攻击模型的正式定义,并为流程挖掘引入了一个有效的基于团体的隐私保存技术。我们的技术涵盖了过程挖掘的主要观点,包括控制流量,时间,案例和组织视角。所提出的技术提供了可解释和可调的参数来处理不同的隐私方面。我们采用现实生活事件数据,并评估数据实用程序和结果实用程序以显示隐私保存技术的有效性。我们还将这种方法与其他基于团体的基于组的方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号