首页> 外文期刊>Data & Knowledge Engineering >Handling data imperfection-False data inputs in applications for Alzheimer's patients
【24h】

Handling data imperfection-False data inputs in applications for Alzheimer's patients

机译:处理Alzheimer患者应用中的数据不完美的假数据输入

获取原文
获取原文并翻译 | 示例

摘要

Handling data imperfection is a crucial issue in many application domains. This is particularly true when handling imperfect data inputs in applications for Alzheimer's patients. In this paper we first propose a typology of imperfection for data entered by Alzheimer's patients or their caregivers in the context of these applications (mainly due to the memory discordance caused by the disease). This topology includes nine direct and three indirect imperfection types. The direct ones are deduced from the data inputs e.g. uncertainty and uselessness. The indirect imperfection types are deduced from the direct ones, e.g. the redundancy. We then propose an approach, called DBE_ALZ, that handles false data entry by estimating the believability of each data input. Based on the proposed typology, the falsity of these data is related to five imperfection types: uncertainty, confusion, typing error, wrong knowledge and inconsistency. DBE_ALZ includes a believability model that defines a set of dimensions and sub-dimensions allowing a qualitative estimation of the believability of a given data input. It is estimated based on its reasonableness and the reliability of its author. Compared to related work, the data input reasonableness is measured not only based on common-sense standard, but also based on a set of personalized assertions. The reliability of the patient is estimated based on the progression of the disease and the state of his memory at the moment of entry. However, the reliability of the caregiver is estimated based on his age and his knowledge about the data input's field. Based on the believability model, we estimate quantitatively the believability of the data input by defining a set of metrics associated to the proposed dimensions and sub dimensions. The measurement methods rely on probability and fuzzy set theories to reason about uncertain and imprecise knowledge (Bayesian networks and Mamdani fuzzy inference systems). Three languages are supported: English, French and Arabic. Based on the generated believability degrees, a set of decisive actions are proposed to guarantee the quality of the data inputs e.g., inferring or not based on a given data. We illustrate the usefulness of our approach in the context of the Captain Memo memory prosthesis. Finally, we discuss the encouraging results derived from the evaluation step.
机译:处理数据不完美是许多应用领域的一个至关重要的问题。当处理Alzheimer患者的应用中的不完美数据输入时,尤其如此。在本文中,我们首先提出了阿尔茨海默氏症病人或其护理人员在这些应用中输入的数据的不完美的类型(主要是由于由于疾病引起的记忆不和谐)。这种拓扑包括九种直接和三种间接缺陷类型。从数据输入推断出直接的直接。不确定性和无用。间接缺陷类型从直接推导出来,例如:冗余。然后,我们提出了一种叫做DBE_ALZ的方法,通过估计每个数据输入的可信度来处理错误数据条目。基于所提出的类型,这些数据的虚假性与五种不完美类型有关:不确定性,混乱,打字错误,错误的知识和不一致。 DBE_ALZ包括一个可信度模型,它定义了一组尺寸和子维,允许定性估计给定数据输入的可信度。据估计,基于其作者的合理性和可靠性。与相关工作相比,数据输入合理性不仅基于常识标准,而且基于一组个性化断言来衡量。患者的可靠性是根据疾病的进展和入境时滞的日记状态的估计。然而,根据他的年龄和他关于数据输入字段的知识估计了护理人员的可靠性。基于可信度模型,我们通过定义与所提出的尺寸和子维度相关联的一组度量来定量地估计数据输入的可信度。测量方法依赖于概率和模糊设定理论的理由,了解不确定和不精确的知识(贝叶斯网络和Mamdani模糊推理系统)。支持三种语言:英语,法语和阿拉伯语。基于所产生的可信度度,提出了一组决定性的行动来保证数据输入的质量,例如,基于给定数据推断或不推断。我们说明了在备忘录记忆假体的上下文中的方法的有用性。最后,我们讨论了源自评估步骤的令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号