首页> 外文期刊>Data & Knowledge Engineering >Dynamic adaptive data structures for monitoring data streams
【24h】

Dynamic adaptive data structures for monitoring data streams

机译:用于监视数据流的动态自适应数据结构

获取原文
获取原文并翻译 | 示例

摘要

The monitoring of data streams is a very important issue in many different areas. Aspects such as accuracy, the speed of response, the use of memory and the adaptability to the changing nature of data may vary in importance depending on the situation. Examples such as Web page access monitoring, approximate aggregation in relational queries or IP message routing are clear examples of a varied range of those needs. There are different data structures that deal with this problem such as the counting bloom filters, the spectral bloom filters and the dynamic count filters. Those data structures range from static to complex dynamic representations of the data stream that keep an approximate count of the number of occurrences for each data value. In this paper, we focus on three main aspects. First, we analyze the problem in perspective and review the existing static and dynamic solutions. Second, we propose and analyze in depth a simple yet powerful partitioning strategy that reinforces the advantages of the methods proposed up to now solving most of their drawbacks. Finally, using real executions and mathematical models, we evaluate the existing methods alone and in combination with our partitioning strategy. We show that with our partitioning strategy, it is possible to reduce the memory requirements and average response time, improving the adaptiveness to changing data characteristics and leaving the accuracy of the partitioned dynamic data structures intact.
机译:在许多不同领域中,数据流的监视是一个非常重要的问题。诸如准确性,响应速度,内存使用以及对数据不断变化的适应性等方面可能会根据情况而在重要性上有所不同。诸如网页访问监控,关系查询中的近似聚合或IP消息路由之类的示例就是这些需求范围广泛的清晰示例。有许多数据结构可以处理此问题,例如计数布隆过滤器,频谱布隆过滤器和动态计数过滤器。这些数据结构从数据流的静态表示到复杂的动态表示,范围涵盖每个数据值的出现次数的近似计数。在本文中,我们集中在三个主要方面。首先,我们从角度分析问题,并回顾现有的静态和动态解决方案。其次,我们提出并深入分析了一种简单而强大的分区策略,该策略强化了迄今为止所提出方法的优点,解决了它们的大多数缺点。最后,使用实际执行和数学模型,我们单独评估现有方法,并结合我们的分区策略进行评估。我们表明,使用我们的分区策略,可以减少内存需求和平均响应时间,提高对变化的数据特征的适应性,并完整保留已分区动态数据结构的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号